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Abstract

In this thesis we study the limitations of data structures and how they can
be overcome through careful consideration of the used memory models. The
word RAM model represents the memory as a finite set of registers consisting
of a constant number of unique bits. From a hardware point of view it is not
necessary to arrange the memory as in the word RAM memory model. However,
it is the arrangement used in computer hardware today.

Registers may in fact share bits, or overlap their bytes, as in the RAM
with Byte Overlap (RAMBO) model. This actually means that a physical bit
can appear in several registers or even in several positions within one regis-
ter. The RAMBO model of computation gives us a huge variety of memory
topologies/models depending on the appearance sets of the bits.

We show that it is feasible to implement, in hardware, other memory models
than the word RAM memory model. We do this by implementing a RAMBO
variant on a memory board for the PC100 memory bus. When alternative
memory models are allowed, it is possible to solve a number of problems more
efficiently than under the word RAM memory model. We look at three priority
queue related problems: the Discrete Extended Priority Queue, the Time Queue,
and the Prefix Sum problems.

We side-step several lower bounds for the discrete extended priority queue
problem and the prefix sum problem by allowing alternative memory models.
We suggest two data structures and algorithms, which provide all the operations
for the two problems in worst case constant time. It is not possible to achieve
this time bound using the word RAM memory model.

We also suggest a data structure for the time queue problem. The algorithms
run in expected constant time for the operations that delete the minimum ele-
ment and worst case constant time for the other operations. The data structure
can be maintained by several processes that share a part of the memory. Finally,
we also show that it is possible to replace the ALU in a processor with memory
while still keeping the ALUs functionality. Hence it is well worth and practical
to consider alternative memory models, at least for special purpose processors.
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Introduction

In this thesis we study the limitations of data structures and how they can
be overcome through careful consideration of the used memory model. The
main question is whether one should consider alternative memory models when
designing data structures or only work with the already established ordinary
RAM memory model.

The thesis consists of two parts, this introduction and five research papers.
We start the introduction with a brief discussion about models of computation
and memory models. This is followed by a discussion about data structures
in general and data structures used to solve priority queue related problems in
particular. The five papers are then summarized. We end the introduction with
some conclusions and open research questions.

1 Models of Computation and Memory Models

A computer today consists of a CPU, memory, and an I/O subsystem. The
CPU contains, at least, a control unit, a cache, and an Arithmetic Logic Unit
(ALU). The ALU is used to compute various functions. These functions usually
include the bitwise operations (boolean operations and various shifts) and arith-
metic operations (addition, subtraction, multiplication, and division). Such a
computer is called a von Neumann computer [29] and is modeled as a Random
Access Machine (RAM) [8, 26]. In the RAM model, the CPU can perform four
types of operations: I/O operations which let the computer communicate with
its surrounding, read and write operations which move data from and to the
memory, jump operations (conditional or unconditional) which affect the flow
of control, and arithmetic and logic operations.

Depending on which arithmetic and logic operations one allows, we talk
about different variants of the RAM model. The basic RAM model allows
addition and subtraction. If multiplication and division are allowed we denote

1
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the model MRAM and if bitwise boolean operations are allowed we use an
additional B in the name (for example BRAM and MBRAM ) [26].

In the RAM models, the memory is modeled as an infinite set of registers,
which store values. This is not feasible since it would require an infinite address
size and consequently an infinite register size to address them. Further, if we
allow multiplication and an unbounded word size the RAM model becomes as
powerful as the parallel model PRAM [15, 17, 23]. Hence we restrict the word
size and use w to denote it. Such RAMs are denoted word RAM s. A restricted
word size implies a bounded universe and without loss of generality we let the
universe be the integers from 0 to M − 1 where M ≤ 2w. In this thesis we only
consider word RAMs and we specify the set of operations on a case-by-case
basis.

Moreover, in the RAM models, each register is represented by individual
bits. In the word RAM models there are 2w registers consisting of w bits and
hence in total there are 2w · w bits in the memory. We refer to this memory
model as the RAM memory model. From a hardware point of view it is not
necessary to arrange the memory as in the RAM memory model. However, it
is the arrangement used in computer hardware today.

Fredman and Saks suggested that registers may share bits, or in their words
“words that overlap”, and they named the model of computation: RAM with
Byte Overlap (RAMBO) [11]. This actually means that a physical bit can ap-
pear in several registers or even in several positions within one register. Brodnik
formalized the definition and introduced the notion of an implicit and an ex-
plicit RAMBO [4]. Each individual bit appears in the registers according to its
appearance set. In the implicit RAMBO the appearance sets are static, and
in the explicit RAMBO they are dynamic, that is, the appearance sets can be
changed during execution of a program. The RAMBO model of computation
gives us a huge variety of memory models depending on the appearance sets of
the bits. Note that one part of the memory can have bytes that overlap while
another does not.

2 Data Structures

Data structures are used by most computer programs to organize their data
so that they can be processed efficiently. Several different data structures can
often be used to solve one particular problem. For example, to store a set of
elements one can use, among other data structures, a linked list, an array, or a
hash table. Depending on the properties of the set and how it will be processed,
different properties of the data structures are important.

We will look at a few data structures that can be used to solve priority queue
related problems. These data structures can be used more efficiently if stored
in alternative memory models.
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2.1 Priority Queues and Related Data Structures

Priority queues and variants thereof are used to solve a variety of problems:
sorting, event driven simulation, time-out managers, dictionaries, union-split-
find, graph problems (for example shortest path and minimum spanning tree),
closest neighbour searches, scheduling, etc. [7, 9, 18, 22, 25]. These problems
appear in many applications, for example: routing of internet traffic (IP address
lookup), 3-D games, spread sheet programs, and travel planning.

We look at two variants of priority queues; the Discrete Extended Priority
Queue, and the Time Queue. The time queue is targeted at solving the problem
of supporting a time-out manager while the discrete extended priority queue is
more general and can be used in solutions to all of the above stated problems.
Further, we also look at the related Prefix Sum problem introduced by Fredman
[10].

The discrete extended priority queue is a rather general extension of the
priority queue, which in its most basic variant only supports the operations
insert, min, and deleteMin.

Definition 1 The Discrete Extended Priority Queue problem is to maintain a
set N of size N with elements drawn from an ordered bounded universe M =
[0..M − 1] and support the following operations:
insert(e) N := N ∪ {e},
delete(e) N := N\{e},
predecessor(e) return the largest element f ∈ N such that f < e,
successor(e) return the smallest element f ∈ N such that f > e,
member(e) return whether e ∈ N ,
min() return the smallest element of N ,
max() return the largest element of N ,
deleteMin() delete the smallest element of N ,
deleteMax() delete the largest element of N .

Note that using the first four operations the last five can be supported. The
min() operation is a special case of successor(e) and max() of predecessor(e)
while deleteMin() and deleteMax() are special cases of delete(e). The
member(e) operation is equivalent to checking if successor(predecessor(e))
is equal to e.

Under the pointer machine model (cf. [21]), Mehlhorn et al. [18] proved a
lower bound of Ω(lg lg M) for the discrete extended priority queue problem. The
stratified tree by van Emde Boas et al. provides a matching upper bound [25].
Beame and Fich later gave a lower bound for the predecessor query under the
communication game model (cf. [19, 30]). Under the cell probe model (cf. [32])
the lower bound becomes Ω(min((lg lg M/ lg lg lg M),

√
lg N/ lg lg N)) when re-

stricting the memory usage to NO(1) words, which also applies to the RAM mod-
els [3]. They also gave a matching upper bound, in the RAM model and hence
the communication game and the cell probe models, for the static version of the
problem (without insert, delete, deleteMin and deleteMax). Andersson
and Thorup [2] gave a data structure and an algorithm with O(

√
lg N/ lg lg N)
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worst case time for the dynamic version. For the static general case (arbitrary
number of dimensions), Brodnik and Munro [6] gave a data structure with O(1)
worst case time for any N but using O(M) bits of space. On the other hand,
Ajtai et al. [1] presented a solution using only O(N) words when N = O(M1/p).

The next problem we look at is to support a time-out manager, which asso-
ciates items with time stamps. The manager also has a current time, which is
increased. If it is increased to the time stamp of some item, this item is con-
sidered to have timed out and should be handled specially. Usually the current
time is increased according to a real time clock. The operations of the time
queue are chosen to support the time-out manager:

Definition 2 The Time Queue problem is the problem of maintaining a set N
of elements and to support the following operations (where t0 is the time of the
min element and C is the maximum duration of any element):
insert(e, t) iff t0 < t ≤ t0 +C then let N := N ∪{e} with e.t = t,
delete(e) let N := N\{e},
min():e return the min element,
deleteMin() delete the min element,
update(e,t) iff t0 < t ≤ t0 + C then change the time e.t of e to t,
delLessThan(t, F) delete all elements e with time e.t less than t and call

the function ’F ’ for each of the deleted elements.

Any solution to the discrete extended priority queue problem can be use to
solve the time queue problem. In addition, Brown [7] suggested the use of a
data structure called Calendar Queue and Varghese and Lauck [28] suggested a
very similar solution called Hashed and Hierarchical Timing Wheel.

We consider a variation of the time queue problem where two processes must
be able to use the data structure (cf. [12, 17, 23, 24]). One process performs
time critical tasks and must be guaranteed constant time operations. This
process, however, only needs to perform the min operation and a restricted
update operation. The other process performs all operations and may spend
more time on each operation.

The last problem we study is the prefix sum problem, which was introduced
by Fredman [10]:

Definition 3 The Prefix Sum problem is to maintain an array A of size N
and to support the following operations (where 0 ≤ j < N):
update(j, Δ) A(j) := A(j) + Δ,

retrieve(j) return
∑j

i=0 A(i).

A solution to the prefix sum problem also gives a solution to the Rank problem;

Definition 4 The Rank problem is to maintain a set N of size N with ele-
ments drawn from an ordered bounded universe M = [0..M −1] and support the
following operations:
insert(e) N := N ∪ {e}.
delete(e) N := N\{e},
rank(e) return the number of elements f ∈ N where f ≤ e.
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In an array A of size M we let the value of A[i] be 1 if i ∈ N and 0 otherwise.
Now the prefix sum for each element in A is equal to the rank of that element
in the set N .

The inverse problem to the Rank problem is the Select problem:

Definition 5 The Select problem is to maintain a set N of size N with ele-
ments drawn from an ordered bounded universe M = [0..M −1] and support the
following operations:
insert(e) N := N ∪ {e},
delete(e) N := N\{e},
select(i) return the element e ∈ N with rank i.

These problems has been referred to as the Searchable Partial Sums problem
[16, 20] when combined. Given two data structures, one used to solve the rank
problem and one used to solve the select problem, we can solve the discrete
extended priority queue problem. We insert and delete the given element in
both data structures. To support successor(e) we first find the rank i of e
and then select the element with rank i + 1. To support predecessor(e) we
first find the rank i of e − 1 and then select the element with rank i. As noted
above the last five operations of the discrete extended priority queue problem
are special cases of these four operations.

Several lower bounds has been shown for the prefix sum problem. Fred-
man showed a Ω(lg N) algebraic complexity lower bound and a Ω(lgN/ lg lg N)
information-theoretic lower bound [10]. Yao [31] has shown that Ω(lg N/ lg lg N)
is an inherent lower bound under the semi-group model of computation and this
was improved by Hampapuram and Fredman to Ω(lg N) [14].

3 Summary of Included Papers

We now continue with a summary of the five included papers:

• Paper 1

Design of a High Performance Memory Module on PC100 presents the
hardware design of the special memory used in the Worst Case Constant
Time Priority Queue paper (Paper 4). In this memory the words cor-
responds to the leaves of a balanced binary tree. Each node of the tree
contains a flag bit and each such word contains the flags along the root
to leaf path, so, for example, the flag at the root is in all of these words.
The specific architecture was called Yggdrasil after the giant ash tree link-
ing the worlds in Norse mythology. This particular design and hardware
implementation is for the PC100 memory bus used in most Pentium-2
computers.

This thesis author’s contribution to the results in this paper is the software
used for the verification of the hardware implementation: a device driver,
a user library, and test programs.
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• Paper 2

In the paper Bitwise Operations under RAMBO we study the problem
of computing w-bit bitwise operations using only O(1) memory probes.
When using the RAM memory model there exists a Ω(2w) space lower
bound while this space bound goes down to O(w) bits if we consider al-
ternative memory models. We present algorithms that use four different
memory models to perform bitwise boolean operations and shift opera-
tions.

• Paper 3

In the paper Multiprocess Time Queue we implement a time queue for
elements with a bounded maximum duration C. This particular time
queue supports a time-out manager controlled by two processes. The first
process performs all the operations of the time queue while the other only
performs min and a restricted update.

We use a data structure similar to the Calendar Queue by Brown [7]
and consider a memory model where two or more processes can share a
part of the memory under mutual exclusion. The operations deleteMin

and delLessThan are supported in expected constant running time un-
der conditions that were met by our application. The other operations
are supported in constant worst case running time. The space needed is
proportional to the square root of the maximum duration of any element,
and the number of elements, that is, O(

√
C + N).

• Paper 4

The paper Worst Case Constant Time Priority Queue extends work done
by Brodnik [4]. It presents a solution to the discrete extended priority
queue problem using a data structure called Split Tagged Tree. A part of
the data structure is stored using the Yggdrasil memory.

The solution provides all the operations in worst case constant running
time using 2M + O(lg M) bits of ordinary memory and M bits of the
special Yggdrasil memory. If only support for either min, deleteMin and
successor or max, deleteMax and predecessor is needed the amount
of ordinary memory used is reduced to M + O(lg M) bits. The amount
of ordinary memory can be reduced even further, to O(N lg M) bits, at
the expense of the worst case time. If reduced, the running time of the
update operations (insert, delete, deleteMin and deleteMax) is ex-
pected constant time instead of worst case constant time.

• Paper 5

In An O(1) Solution to the Prefix Sum Problem on a Specialized Memory
Architecture we study the prefix sum problem. We show that it is possible
to perform both update and retrieval in O(1) time simultaneously under a
memory model similar to the Yggdrasil memory model. In this variant we
allow each node on the path to store several bits instead of only one bit. To
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achieve the O(1) time we must allow O(
√

M (lg N) · lg M) bits of ordinary
memory and O(N lg M) bits of special memory to be used. This is a huge
amount of ordinary memory and if we restrict the space requirement to
be sub exponential in both N and M (O(lg M) bits of ordinary memory
and O(N lg M) bits of special memory) we need to used O(lg lg N) time.
This is still an improvement over the lower bounds that we side-step.

4 Conclusion and Future Research

We showed that it is feasible to implement, in hardware, other memory models
than the RAM memory model. We did this by implementing the Yggdrasil
variant on a memory board for the PC100 memory bus. Further, we showed
that, when we allow alternative memory models, it is possible solve a number
of problems more efficiently than under the standard RAM memory model. We
looked at two variants of priority queues; the discrete extended priority queue
and the time queue; and we studied the prefix sum problem. We provided three
data structures, which yield efficient solutions to these three problems. We also
showed that it is possible to replace the ALU in a processor with memory while
keeping the functionality provided by the ALU.

We conclude that it is possible to enhance data structures by allowing the
use of alternative memory models. However, the alternative memory models
seem to be different for different problems. They are therefore unlikely be an
option in standard computers, which are designed to be general. Thus, we
believe that it is well worth to consider alternative memory models, at least for
special purpose processors.

Obviously, there is more research needed and there are a number of open
research questions. We highlight a few here:

• Searching in Higher Dimensions.

Is it possible to use the Yggdrasil memory model (or some other novel
memory model) to improve the time complexity of solutions to search
problems (for example Closest Neighbour Searches) in finite d-dimensional
space?

• Non Priority Queue Related Problems

What other problems, beside priority queue related problems, can be
solved more efficiently when alternative memory models are allowed?

In this thesis we have touched on this briefly in Paper 2 where we stud-
ied the bitwise operations and how to compute them under the RAMBO
model using only memory probes.

• Decrease Space Requirement.

– Is it possible to decrease the space requirement for the discrete ex-
tended priority queue problem to be o(M) while still retaining the
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worst case O(1) time? Brodnik and Iacono have recently started to
look at this [5].

– Further, can we decrease the space requirement O((NO(1) +MO(1)) ·
lg M) bits for to the prefix sum problem while still retaining a O(1)
time solution?
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Design of a High Performance Memory Module

on PC100

Roni Leben ∗ Marijan Miletić † Marjan Špegel∗

Andrej Trost ‡ Andrej Brodnik §¶ Johan Karlsson¶

Abstract

In this contribution we present the design of a special-purpose memory board for
the PC100 memory bus. The data storage on the module is placed in dynamic
RAM chips and in an FPGA chip to provide for faster data access needed in
increasingly popular time-critical PC applications such as real-time simulation
of systems and time queue handling in general. The complexity of the PCB
design for the module is one of the most demanding designs ever accomplished
in Slovenia. Actually, there are just a few companies in Europe at the moment
capable to design and produce the PC100-compatible boards.

The supporting software was developed under the operating system FreeBSD
ver. 3.2 as a user library and a kernel module.

1 Introduction and Motivation

Although many computer architectures have been proposed and implemented
over the half-century of modern computing, the predominant architecutre is still
the von Neumann machine consisting of the processor (e.g. CPU), the memory
(e.g. RAM), and the I/O units (e.g. VDU).

The communication between these units is carried out through well defined
interfaces – buses. In contemporary off-the-shelf PCs one can find a variety of
buses, and the most common among them are the ISA, EISA, and the PCI bus.
These buses are designed to connect CPU with I/O devices (e.g. disk-, video-,
network-controllers). Though the speed of communication between the CPU
and I/O devices is ever increasing, it is typically still significantly lower than
the speed of communication between the CPU and the main memory. In fact,
because of increasingly higher requirements for the speed of the CPU-to-memory

∗Jožef Stefan Institute, Ljubljana, Slovenia
†Artinian, Ljubljana, Slovenia
‡University of Ljubljana, Faculty of Electrical Engineering, Ljubljana, Slovenia
§Institute of Mathematics Physics and Mechanics, Ljubljana, Slovenia
¶Lule̊a University of Technology, Lule̊a, Sweden
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communication, the computer memory is typically placed on a completely dif-
ferent and separate bus. In the beginning of 1998, a new standard for this bus
was developed and proposed by Intel called the PC100 bus, permittting speeds
up to 6.4 Gbit/sec. In fact, most of creativity in computer design is nowa-
days spent on the interconnection between the memory and the processor, and
the data throughput will ultimately depend on a number of technological and
architectural decisions.

In this paper we present the design of an advanced memory module for
the PC100 bus. The logical design of the module is based on a special memory
topology called Yggdrasil described and tested in [4]. Briefly, the memory can be
described as a binary tree where each internal node stores one bit of information.
The addressable memory registers are actually at the leaves of the tree, whereas
their content is stored on the path from this leaf to the root. The design of the
memory is under patent protection by Priqueue AB from Sweden. Karlsson in
his master thesis used two different implementations of the memory: the first
one was software emulation of the tree in regular memory, whereas the second
one was an ISA-bus hardware implementation (YGG-I ), where the height of
the YGG-I was 16 bits.

In the new design called YGG-II, we extended the height of YGG-I to 25 bits
by splitting the address tree into two parts: the first part covering top 13 bits
that were placed in an FPGA device, and the second part covering lower 12 bits
that were placed in regular memory ICs. In the following section we describe
the overall architecture of the YGG-II. This is followed by the description of the
PCB design, and the FPGA design. We conclude the paper with the discussion
of likely further work on the new module.

2 YGG-II Architecture

Memory architecture of choice for the design of new PCs at the beginning of
1998 was SDRAM for the 72 bits wide PC100 bus. This is dynamic RAM with
synchronous interface and clock running at 100 MHz. Internal DRAM access
time of minimum 50 nsec is subdivided into several 10 nsec cycles permitting
functions overlap and data bursts. Classic RAS and CAS signals for a mul-
tiplexed address and data strobe have been assigned new functions according
to the simplified state diagram as shown in Fig. 6.27 in [5]. The basic timing
difference is shown in Fig. 6.3 in [5].

The YGG tree-like configuration, shown in Fig. 1.1, requires uniquely
decreasing-capacity RAMs for each data bit. Due to the total availability of
24 address and 64 data lines, we can build two separate 25 bits high data trees.
Seven MSBs are fixed to the logical 1 level by resistor’s pull-up network. Active
DQ24/56 flip-flops are enabled by the board-select lines, only without any ad-
dressing. The DQ23/55 data are stored in 2-bit memory controlled by the MSB
A11 line. The DQ22/54 needs 4-bit memories addressed by the A10 and A11
lines at RAS time. The LSB DQ0/32 uses two SDRAM bits with all address
lines active for 16MB access. Data burst length was limited to 1 in order to
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Figure 1.1: Architecture of the YGG-II board.

accommodate the tree-type access rather then the forecasted long sequential or-
der. The lower 12 data bits were realized with a 16M×4 SDRAM IC using only
two outputs. Column addresses were sequentially reduced with RAS controlled
10-line buffer. The last IC has the BA1 bank select line grounded rather than
connected to A0 as expected. That was discovered to be the way the linear
addresses are generated on PC100.

The MSB SDRAM with 2×13 blocks from 4k bits downward were all
squeezed into a single FPGA from the Xilinx XC4036XLA series first produced
in January 1999. Only the top 12 addresses strobed by RAS are utilized, and
only three of all PC100 commands need support: ACTV, READ and WRITE. The
ACTV command sets FPGA RAM addresses at RAS time. Two clocks later
comes CAS with WR signal deciding the remaining data transfer. The WRITE

data are immediately provided whereas the READ output should appear after
programmed time of 3 clock cycles. The CS0 and the CS2 signals select 16 bit
words whereas the four DQMB signals enable byte operations. The CKE signal
can freeze the clock, thereby extending all cycles. All of the input signals are
first latched within the fast FPGA input pairs of flip-flops running at 100 MHz
with less than 1.5 nsec overall clock delay. Combinatorial logic is hand-placed
close to the input signals in order to achieve less than 10 nsec delay. Larger
memory blocks made from 32-bit internal RAM ICs were also constrained in
their relative placement within the FPGA device in order to achieve the re-
quired 100 MHz operation.
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3 Printed Circuit Board Design

The aforementioned YGG-II architecture was implemented on a six-layer 168-
pin DIMM SDRAM format printed circuit board (PCB) module. Since our
goal was to design and prototype a PC100-compliant memory module, the PCB
complies with JEDEC ( [3]) and Intel ( [2]) specifications regarding DIMM
memory modules. The printed circuit board has four signal layers and two
power planes (VCC and VSS). The JEDEC standard ( [3]) defines PCB width
of 138.5 mm and maximum height of 38.1 mm, of which 4.0 mm are reserved
for edge connector pins. Since the Xilinx XC4036XLA FPGA has a footprint
of about 32 by 32 mm, there was very little room left for the connections to its
pins near the edge connector pins.

But the central PCB design problem was the routing of the signals. The
Intel specification ( [2]) defines routing topologies, trace lengths, trace widths,
clearance between traces, pads, vias, etc., maximum number of vias and layers to
be used for each of about two hundred signals. On ordinary DIMM boards, the
address and control lines are routed horizontally on the upper part of the PCB
(if we define the lower part to be next to the edge connector) and connected
to the edge connector vertically on the center of the board. The data lines
are routed in vertical direction from edge connector pins via serial resistors to
SDRAM IC’s. The hardest restrictions, however, are placed on the four clock
signals, which are routed diagonally in the two internal layers between the power
planes to minimize their radiation. The edge connector pinout is designed with
these restrictions in mind.

The routing topology of our design is quite different from the one mentioned
above. In addition to the fourteen normal address lines, there are ten more
column address lines, generated by the buffer IC. The data lines also are not
routed only vertically any more; a lot of them are connected to the XC4036XLA
FPGA placed on the center of the board, since the MSB bits of the tree are
stored in it. Many address and control signals are also connected to the FPGA.
Because of these restrictions and the deviations from the Intel’s topology –
as well as because of additional lines to be routed – the automatic routing
performed by Specctra auto-router software package was not an easy task, and
the resulting PCB fist had about 750 vias which were subsequently reduced to
about 650 by hand. Some trace length restrictions also had to be loosened,
because it was physically impossible to fully satisfy them. Furthermore, it did
not make sense to follow the design restrictions very tightly because the internal
delays of the FPGA were also not known at the time of the PCB design; namely,
the FPGA internal routing was completely finished only recently. Finally, there
were also many changes made to the schematic design during the design of the
PCB, the so-called Engineering Change Orders (ECOs) and – since this is the
first prototype – some changes were even made on the finished PCB prototypes.
Because of the high design demands – as well as because of its numerous and
extremely small vias, this PCB is probably also one of the most demanding
designs ever accomplished in Slovenia.
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4 FPGA Design

The upper part of the memory tree – as discussed before – is implemented in a
Xilinx FPGA XC4036XLA consisting of 1296 Configurable Logic Blocks (CLBs).
Each CLB can be used for combinatorial and registered logic or as a 32×1-bit
Select-RAM static memory ( [1]). The external signals are routed through I/O
Blocks (IOBs). The IOBs provide input and output latches and flip-flops used
to synchronize the external signals with an internal clock. Special global-clock
buffers and routing resources are used for low-skew clock distribution to each
CLB and IOB.

The circuit consists of 1-bit memory blocks from 4k×1-bit to a single mem-
ory cell, of address and data latches, and of read/write control logic shown in
Fig. 1.2. The control logic is used for decoding SDRAM instructions provided

Figure 1.2: The FPGA circuit architecture.

through the control bus signals. The implemented instructions are ACTV (RAS
cycle), READ and WRITE. Since the upper memory tree uses only row-address
lines, all the internal address signals are latched during ACTV command. The
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timing diagram of the READ and WRITE instructions was determined from the
SDRAM specifications. The detail structure of one memory block is presented
in Fig. 1.3. During the execution of the READ instruction, the data is trans-

Figure 1.3: A detail of one memory block.

ferred from the output of the memory module through the 3-state output buffer
in the third cycle after the instruction. The data and the WRITE instruction are
inserted simultaneously in the write cycle and are latched in the fast capture
latches in the IOBs. The fast capture latches are used to meet SDRAM set-up
and hold-time requirements as described in [6]. After decoding of the WRITE

instruction, each data bit is captured in a single flip-flop for subsequent transfer
to the memory module during the following clock cycles.

The circuit was designed schematically with the Xilinx Foundation package,
which provides many already prepared logic blocks and a hardware macro gen-
erator. The macro generator is useful for quick composition of different memory
modules but is unfortunately limited to the memory depth of 256 locations only.
Larger memory modules were designed hierarchically from the basic 32×1-bit
synchronous Select-RAM. We extensively used relationally placed macros for
manual mapping of Select-RAM cells and decode logic in 2 column wide CLB
matrices. Select-RAM data outputs were combined using 3-state buffers, which
are faster than combinatorial multiplexers. The critical part of the design is
the read/write control logic required to operate at 100MHz clock frequency.
The logic was manually mapped and some parts were placed to absolute CLB
locations inside FPGA. The best locations for the control logic were derived
experimentally after many automatic placement and routing iterations. The
delay-driven placement and routing was used, based on timing specifications for
the critical paths in the design. The complete design took several months due
to many design iterations, hand mapping and placements, as well as due to very
long compilation times permitting only one or two routing iterations per day.
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5 Conclusions

In this contribution we presented an architecture and design of a highly advanced
memory board for the PC100 memory bus. The board was designed, produced
and fully tested in Slovenia. The tests show that the board performs according
to the specifications of this bus and hence allows accesses without wait-states,
which in other words means, that it supports the same access speed as ordinary
DRAM boards.

The successful development and prototyping of our memory module proves
two things: first, the feasibility of the tree topology of RAM and consecutively
its usefulness in, for example, real-time applications which involve efficient han-
dling of time-queues. Second, our design team has clearly demonstrated suf-
ficient expertise and resources to create this sophisticated piece of electronic
hardware and, therefore, seems well qualified for competing on international
markets without hesitation.
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Figure 1.4: Picture of a working prototype.
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Abstract

In this paper we study the problem of computing w-bit bitwise operations
using only O(1) memory probes. We show that under the RAM model
there exists a Ω(2w) space lower bound while under the RAMBO model
this space bound goes down to O(w) bits. We present algorithms that
use four different RAMBO memory topologies to perform bitwise boolean
operations and shift operations.

1 Introduction

A computer today consists of a CPU, memory, and an I/O subsystem. The CPU
contains, at least, a control unit, a cache, and an Arithmetic Logic Unit (ALU).
The ALU is used to, given operands and an operation code (opCode), compute
various functions. These functions include the bitwise operations (boolean op-
erations and various shifts) and arithmetic operations (addition, subtraction,
multiplication, and division). Although the arithmetic operations are consid-
ered atomic operations, they still consist of several micro-steps which, in turn,
usually are bitwise operations (for more details see any text book on computer
architectures, e.g. [10]).

In theoretical computer science we model such a computer as a RAM (cf. [5,
18]) where the processor is capable of performing functions from some predefined
finite subset of NC1 in O(1) time. The class NCk of functions is defined by:

Definition 2.1 [11, p. 135] For each k ≥ 0 the class NCk consists of the
search problems solvable by log-space uniform classes of boolean circuits having
polynomial size and depth O(logk w)

NC1 involves circuits of logarithmic depth that computes, at each step, vari-
ous bitwise operations (compare micro-steps above). Indeed, these operations
could be computed using table lookup – i.e. the circuit elements would be re-
placed by memory probes only. However, the size of such table would become
prohibitively large. In this paper we use a variant of the RAM model called
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RAMBO (RAM with bytes/bits overlapping) and show that all bitwise opera-
tions can be performed using writes and reads of memory only, while the space
requirement remains at a bearable O(w) bits.

As said, we can divide the bitwise operations into shifts and boolean opera-
tions. Further, the shifts come in five flavors: left and right shift, left and right
rotation, and arithmetic right shift. In Sect. 2 we show how all these operations
can be performed using 4w bits under the RAMBO model – a clear gain over
the straightforward approach which uses O(2ww2) bits under the RAM model.
On the other hand, to implement the boolean operations using table lookup,
although they all can be computed using nand (or nor) only, requires at least
Ω(2w) bits (see Corollary 2.1) of memory under the RAM model and a straight-
forward approach uses O(22ww) bits. This is much more than O(w) bits needed
under the RAMBO model as will be seen in Sect. 3. In total, we reduce the
size of the data structure (i.e. program) from O(22ww) under the RAM model
to O(w) under the RAMBO model without increasing the time complexity.

Finally in Sect. 4 we show how the presented operations can be combined
into a function to perform addition of two words in O(lg w) steps and O(w)
space under the RAMBO model.

1.1 Preliminaries

The RAM model models a computer as a CPU and an infinite set of memory
registers [5, 18]. There are several variants of the RAM model (e.g., MBRAM
[18], and AC0 RAM [2]) and they differ in which operations the CPU can perform
in unit time. Also they differ in whether the memory registers are of bounded
size or not. In this paper we consider a variant of the RAM model where the
only operations are read and write from/to memory with registers of bounded
size w (cf., cell probe model [20]). We refer to this variant as the Read-Write
RAM model.

A Read-Write RAM corresponds to a Turing Machine (TM) [18] with an
alphabet of size 2w ([0, 1, . . . , 2w − 1]), and the possibility to access a random
tape location in unit time. The state transition function (the program) of the
TM corresponds to precomputed tables in the RAM. The computation of some
functions requires a large lookup table:

Theorem 2.1 The computation of an onto function f : A → B on a Read-
Write RAM requires a lookup table of size Ω(B), where B is the size of B.

Proof: To compute f , a TM needs to be able to write all characters in the
range B. A TM uses a tuple in its program to decide what to write and hence
the TM needs at least B tuples in the program. Hence, the size of the lookup
table under the Read-Write RAM is at least B. QED

When considering a character from the alphabet as a binary number the
lower bound for performing bitwise boolean operations on such a character under
the Read-Write RAM model, is:
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Corollary 2.1 A Read-Write RAM requires a lookup table of size Ω(2w) to
perform bitwise boolean operations.

Proof: The range of the boolean operations is the whole alphabet, which is
of size 2w. Hence, from Theorem 2.1 we know that the size of the lookup table
under the Read-Write RAM is Ω(2w). QED

We use the term register when referring to a specific memory location storing
a word and the term word to denote a w-bit value. The notation Wi is used to
denote the ith bit of the word/register W, where 0 ≤ i < w. The least significant
bit of a word/register is bit 0 while the most significant bit is bit w − 1. When
depicting a word/register we place the most significant bit to the left. Hence,
in the 8-bit word abcdefgh, a is the most significant bit 7 while h is the least
significant bit 0. We let ONE denote the w-bit word consisting of w ones (1..1),
and ZERO denote the w-bit word consisting of w zeros (0..0).

In the RAM model all the bits are unique for all registers. The RAMBO
model is an extended RAM model which also has a part of memory where a
bit may occur in several registers or in several positions in one register. The
way the bits occur in this part of the memory has to be specified as part of the
model. If a bit occurs in more than one position in a register (it is overlapped),
and different values are written to the bit, then the bit will store an arbitrary
value.

The RAMBO model was suggested by Fredman and Saks [7], and further de-
scribed by Brodnik [3]. One variant called Yggdrasil was used by Brodnik et al.
to achieve a worst case constant time priority queue [4]. In this paper we use
several variants of the RAMBO model.

The problem of performing boolean operations in different models of com-
putations has been studied extensively. Rennard describes how to perform the
boolean operations in the Game of Life model [15]. Shamir describes a paradigm
called visual computation in which he shows that the boolean operations can be
computed [16]. Ogihara et al. show how to simulate and and or circuits on a
DNA computer [14], while Ahrabian et al. simulate nand circuits [1]. Tsai et al.
derive a systematic algorithm for constructing quantum boolean circuits [17].
The reason to consider the boolean operations is that arithmetic operations,
e.g. addition, multiplication and so on, can be computed, using only them, in
O(wO(1)) time and no additional space.

2 Shift and Rotation Operations

In this section we introduce three new variants of RAMBO (Line, Tail, and
Circle) and use them to implement shift and rotation operations. In all examples
in this section we assume that w = 8 and x=abcdefgh.

2.1 Shift

To shift the bits of a word we use the Line variant of RAMBO. Line consists of
2w bits used to store w + 1 registers of size w bits. We label the bits λi, where
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0 ≤ i < 2w. To store bit j of register line[l] we use bit λi, where i = j + l.
As an example, let us write ZERO to line[8] and afterwards write x to

line[0]. Then λ15 = λ14 = . . . = λ9 = λ8 = 0, λ7 = a, λ6 = b, . . . , λ1 = g,
and λ0 = h. Now, since register line[3] consists of λ10λ9λ8λ7λ6λ5λ4λ3, i.e.
000abcde, reading this register gives the same result as right shift of x three
steps. In general, reading register line[δ] gives the result of right shift δ steps.
Similarly, after initializing line[0]with ZERO, writing x to register line[δ] and
reading line[0] gives us the result as if x is shifted left δ steps (cf. Alg. 2.1).
Hence,

Lemma 2.1 We can perform both left and right shifts using 3 probes and 2w
bits.

2.2 Arithmetic Shift

To perform arithmetic right shift of a word we use the Tail variant of RAMBO.
This variant uses w bits to store w registers of size w bits. We label the bits
θi, where 0 ≤ i < w. To store bit j of register tail[l] we use bit θi, where
i = min(j + l, w − 1).

In this example we write x to tail[0], then θ7 = a, θ6 = b, . . . , θ1 = g, and
θ0 = h. Now, since register tail[3] consists of θ7θ7θ7θ7θ6θ5θ4θ3, i.e. aaaabcde,
reading this register gives the same result as arithmetic right shift three steps.
In general, reading register tail[δ] gives the result of arithmetic right shift δ
steps (cf. Alg. 2.1). Hence,

Lemma 2.2 We can perform arithmetic right shift using 2 probes and w bits.

2.3 Rotation

Rotation (also known as barrel shift) takes the bits which have been shifted out
at one end and shifts them in on the other end. To perform rotations we use
the Circle variant of RAMBO which uses w bits to store w registers of size w.
We label the bits ςi, where 0 ≤ i < w. To store bit j of register circle[l] we
use bit ςi, where i = (j + l) mod w.

Again, when we write x to circle[0], then ς7 = a, ς6 = b, . . . , ς1 = g,
and ς0 = h. Since register circle[3] consists of ς2ς1ς0ς7ς6ς5ς4ς3 reading it gives
the same result as right rotation of x three steps. In general, reading register
circle[δ] gives the result of right rotation δ steps (cf. Alg. 2.1). Further,
writing the word to register circle[δ] and reading circle[0] gives the same
result as left rotation δ. Hence,

Lemma 2.3 We can perform both left and right rotations using 2 probes and
w bits.

The three lemmata above give us:

Theorem 2.2 We can perform any of the five shifting operations using 4w bits
in at most 3 probes.
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word shiftRight(word a, int δ)
line[w] = ZERO; line[0] = a; return line[δ];

word shiftLeft(word a, int δ)
line[0] = ZERO; line[δ] = a; return line[0];

word arithShiftRight(word a, int δ)
tail[0] = a; return tail[δ];

word rotateRight(word a, int δ)
circle[0] = a; return circle[δ];

word rotateLeft(word a, int δ)
circle[δ] = a; return circle[0];

Algorithm 2.1: Methods to compute right and left shift, arithmetic right shift
and right and left rotation δ steps of a.

3 Boolean Operations

We continue with the boolean operations starting with 1-bit values and then
generalize to w-bit values. Furthermore, we show how to, simultaneously, per-
form different boolean operations on the w-bit arguments.

We assume that the reader is familiar with the 16 different boolean opera-
tions on two arguments a and b, where a, b ∈ {0, 1} (cf., any textbook on the
subject, e.g., “Discrete and Combinatorial Mathematics” [8]).

3.1 Simple Boolean Operations

To describe how to compute the boolean operation we use constants C =
{Z,O,A,B} as indices into a table val[|C|]. The table is used to store con-
stants val[Z]=ZERO, val[O]=ONE and values val[A]=a, val[B]=b. We also
have an array r[2] to store two 1-bit values. The values from val are used both
as indices into and as values of r. At the end r also contains the result of our
operation. We compute a given boolean operation by three writes (call them
steps) into r and finally read the result from r.

As an example, let us compute a and b. We want to find the result in r[0].
The result should be 1 if neither a nor b are 0. Hence, we initialize r[0] with
1,

r[0] = 1 , (1)

then we write 0 to r[0] if a == 0 or b == 0. Instead of checking if a == 0 we
can just write 0 to r[val[A]],

r[a] = 0 , (2)

since if a == 1 we will write 0 to r[1] which does not affect our result. Similarly
for b,

r[b] = 0 . (3)
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Finally, register r[0], contains a 0 if either or both of a and b were 0 and 1
otherwise,

r[0] → res . (4)

On the other hand, when computing a nor b, we initialize r[1] with 1, and
write 0 to both r[val[A]] and r[val[B]]. Then if neither a nor b are 1, r[1]
will still contain 1 and 0 otherwise.

It turns out that all 16 boolean operations can be computed in the same
way where the index of r and the value stored into r at each step depends
only on the opCode of the boolean operation. A function fi,j(opCode) can
be used to decide which value to write into which register (cf. Alg. 2.2). The

bool boolOp(int opCode, bool a, bool b)

val[A] = a; val[B] = b;

r[val[f1,1(opCode)]] = val[f1,2(opCode)];

r[val[f2,1(opCode)]] = val[f2,2(opCode)];

r[val[f3,1(opCode)]] = val[f3,2(opCode)];

return r[val[f1,1(opCode)]];

Algorithm 2.2: Method to compute any boolean operation.

function fi,j(opCode) can be tabulated using a table F[opCode][i][j], where
we, for the sake of simplicity, let indices into the table F (and its variants we
will introduce later) always start at 1 (cf. Alg. 2.3 and Alg. 2.4). The second
line in F, for example, corresponds to the and operation (i.e. the opCode of and
is 2), where {Z, O} means write val[O] to r[val[Z]] (i.e., r[ZERO]=ONE)
etc., which matches Eq. 1 – 3.

The size of table F is 〈# of boolean operations〉 · 〈# of steps〉 ·2 · lg |C| = 192
bits. Hence, boolOp in Alg. 2.4 computes any 1-bit boolean operation, in 34
memory probes (reads or writes), using 198 bits (besides F, the arrays val and
r use 6 bits). As we shall see later, we can compress the table F to 96 bits which
totals to 102 bits over all. Hence, we conclude with:

Lemma 2.4 We can compute any boolean operation using 102 bits of memory
using O(1) reads and writes only.

This is worse than the 64 bits straighforward table lookup algorithm under
the RAM model. But in the next section we build on this and get a solution for
w-bit words.

3.2 w-bit Bitwise Boolean Operations

To compute w-bit bitwise boolean operations we use a variant of the RAMBO
model which we refer to as Twin. It consists of 2w bits labeled τi,j where
0 ≤ i < w and j ∈ {0, 1} (see Fig. 2.1). Although there are only 2w bits in Twin,
they represent 2w registers. The register at address aw−1aw−2 . . . a0 (denoted
twin[aw−1aw−2 . . . a0]) is stored using the bits τw−1,aw−1

τw−2,aw−2
. . . τ0,a0

, i.e.,
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int F[opCode][i][j] = {
{{Z, Z}, {A, Z}, {B, Z}},/* 0 */

{{Z, O}, {A, Z}, {B, Z}},/* a and b */

{{Z, Z}, {A, Z}, {B, A}},/* not (a implies b) */

{{Z, O}, {A, Z}, {B, A}},/* a */

{{Z, O}, {A, O}, {B, Z}},/* not (b implies a) */

{{Z, O}, {A, O}, {B, Z}},/* b */

{{Z, Z}, {A, O}, {B, A}},/* a xor b */

{{Z, O}, {A, O}, {B, A}},/* a or b */

{{O, O}, {A, Z}, {B, Z}},/* a nor b */

{{O, O}, {A, Z}, {B, A}},/* a xnor b */

{{O, O}, {A, O}, {B, Z}},/* not b */

{{O, O}, {A, O}, {B, A}},/* b implies a */

{{O, O}, {A, Z}, {Z, Z}},/* not a */

{{O, O}, {A, Z}, {B, O}},/* a implies b */

{{Z, O}, {A, O}, {B, O}},/* a nand b */

{{O, O}, {A, O}, {B, O}} /* 1 */ }

Algorithm 2.3: Table F used by boolOp in Alg. 2.4.

bool boolOp(int opCode, bool a, bool b)

val[A] = a; val[B] = b;

r[val[F[opCode][1][1]]] = val[F[opCode][1][2]];

r[val[F[opCode][2][1]]] = val[F[opCode][2][2]];

r[val[F[opCode][3][1]]] = val[F[opCode][3][2]];

return r[val[F[opCode][1][1]]];

Algorithm 2.4: Method to compute any boolean operation using table lookup.

the ith bit of twin[aw−1aw−2 . . . a0] is τi,ai
For example, twin[0011] consists

of the bits τ3,0τ2,0τ1,1τ0,1.

bit: 3 2 1 0

τ3,1 τ2,1 τ1,1 τ0,1

τ3,0 τ2,0 τ1,0 τ0,0

Figure 2.1: Twin memory with 4-bit words (w = 4)

To get a better feeling for how this memory behaves, let us assume that all
bits in the memory are zero (Fig. 2(a)). Then we write 1111 to twin[0101]

(Fig. 2(b)). Now, if we read twin[0011] we get the word 1001, and twin[1100]

gives 0110.

The twin registers behave as w parallel arrays r. Hence, similarly to the
computation of and above, if we want to compute a and b with w-bit regis-
ters, we first write val[O] to twin[val[Z]], then we write val[Z] to both
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3 2 1 0
0 0 0 0
0 0 0 0

(a) All bits equal to zero.

3 2 1 0
0 1 0 1
1 0 1 0

(b) twin[0101] ← 1111.

Figure 2.2: Twin example with w = 4.

twin[val[A]] and twin[val[B]]. As an example (Fig. 2.3) we use a=0011,
and b=0101 and study the content of twin[val[Z]]. After the three writes,
register twin[val[Z]] (Fig. 3(c)) contains 0001 which is the result of bitwise
boolean and of 0011 and 0101.

3 2 1 0
– – – –
1 1 1 1

(a) twin[ZERO] ← ONE.

3 2 1 0
– – 0 0
0 0 1 1

(b) twin[a] ← ZERO.

3 2 1 0
– 0 0 0
0 0 0 1

(c) twin[b] ← ZERO.

Figure 2.3: Computation of a and b using Twin where a=0011, and b=0101

The special registers twin in the Twin RAMBO variant lets us use a method
similar to boolOp (Alg. 2.4) to compute bitwise boolean operations on w-bit
words. We are still using F from Alg. 2.3 but the parameters a and b and the
array val are w bits wide. Further, the array r is replaced by the twin registers.
Hence using 4w + 192 bits of regular memory and 2w bits of RAMBO memory
we can compute any of the boolean operations.

As stated above, we can reduce the amount of memory needed by compress-
ing the table F. The first, second, and fourth columns only consist of the values
Z and O and hence only 1 bit for each position is needed. The third column
always contains A and it can be removed entirely. The value in the fifth column
is either Z or B and needs only 1 bit. The value in the sixth column is either
Z, O, or A and to store such a value we need 1.5 bits. Hence, each row in the
table actually only needs 5.5 bit instead of 12 bit which totals to 88 bits for the
table. However, we use 2 bits (actually 2 1-bit values) to store the last column,
in order to avoid the gory details needed to use only 1.5 bits, which totals to
96 bits for the table. A new table Fc stores in columns 1, 2, and 3 the values
from column 1, 2, and 4 of F respectively. The fourth column stores Z if the
value of the fifth column of F is Z and O if it is B. The fifth column stores O if
the sixth column of F is O and Z otherwise. The sixth columns stores O if the
sixth column of F is A and Z otherwise.

To be able to use the table Fc we need to compute the values stored in
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the fifth and sixth column of table F based on table Fc. To get the value
from column five of F we first write ZERO to twin[ONE], then we write b to
twin[val[Fc[opCode][4]]]. Now if Fc[opCode][4] was O, twin[ONE] will
contain b and ZERO otherwise. We store this value in a variable, d, and use it
where column five of F was used. We compute the value stored in the sixth
column of F in a similar way and store it in variable, e, for later use. Since
Fc only stores the values Z and O, the table val only need to store two w-bit
values (ZERO and ONE). However, the two variables d and e are also w-bit values.
This gives us:

Theorem 2.3 We can compute any bitwise boolean operation on w-bit words in
36 memory probes using 4w+96 bits of regular memory and 2w bits of RAMBO
memory in O(1) time.

This is a huge improvement over the Ω(2w) bits needed for table lookup under
RAM.

The number of memory probes needed can be reduced by using more mem-
ory. Since, Fc is storing just the indices Z and O, we can avoid one level of
indirection and the usage of the array val, by storing ZERO and ONE directly
into a table Fw, e.g., the and row is {ZERO, ONE, ZERO, ONE, ZERO, ZERO}. This
increases the total usage of regular memory to 96w + 2w bits, but we only need
29 memory probes (cf. Alg. 2.5) which gives us the following result:

Corollary 2.2 We can compute any bitwise boolean operation on w-bit words
in 29 memory probes using 96w + 2w bits of regular memory and 2w bits of
RAMBO memory in O(1) time.

Again, this is still a large improvement over the Ω(2w) bits needed for table
lookup under RAM.

Note that for 1-bit words the total amount of memory is 100 bits of regular
memory and no bits of RAMBO memory (r is used instead of twin) which is a
slight improvment over the result in Sect. 3.1.

word boolOp(int opCode, word a, word b)

twin[ONE] = ZERO; twin[Fw[opCode][4]]= b; d = twin[ONE];

twin[ONE] = ZERO; twin[Fw[opCode][5]]= ONE;

twin[Fw[opCode][6]]= a; e = twin[ONE];

twin[Fw[opCode][1]]=Fw[opCode][2];

twin[a]=Fw[opCode][3];

twin[d]=e;

return twin[Fw[opCode][1]];

Algorithm 2.5: Method to compute any combination of bitwise boolean op-
erations for w-bit arguments.

Moreover, when storing w-bit values in the table Fw we can actually decide
which operation we want to perform on individual bits by storing other values
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than ZERO and ONE. For example, we can perform, xor on the bits at even
position and and on the bits at odd positions (xor-and).

As an example, we compute, in 2-bit words, xor for the least significant bit
and and for the most significant bit. The row for this operation in the table Fw

would be {00, 10, 01, 11, 00, 01}. The most significant bit in each word
corresponds to the values in the and line of Fc and the least significant bit to
the values in the xor line. If we let a=11 and b=00 the result should be 01.
Following the steps in Alg. 2.5 with these values we get the program trace in
Fig. 2.4, which gives the expected result.

Instruction τ1,1τ0,1/τ1,0τ0,0 d e
twin[11] = 00 00/- - - -
twin[11] = 00 00/- - - -
d = twin[11] 00/- - 00 -
twin[11] = 00 00/- - 00 -
twin[00] = 11 00/11 00 -
twin[01] = 11 01/11 00 -
e = twin[11] 01/01 00 01
twin[00] = 10 01/10 00 01
twin[11] = 01 01/11 00 01
twin[d] = e 01/01 00 01
twin[00] → res

Figure 2.4: Trace of boolOp in Alg. 2.5 with a=11, b=00, and Fw[opcode] =

{00,10,01,11,00,01}.

Hence, we can support any combination of bitwise boolean operations on
individual bits in w-bit words using 6w extra bits per combination. Let c be
the number of combinations of different boolean operations we wish to support
(note c ≤ 16w). Then,

Corollary 2.3 We can compute, in O(1) time, any of c combinations of bitwise
boolean operations on individual bits in w-bit words in 29 memory probes using
c · 6w + 2w bits of regular memory and 2w bits of RAMBO memory.

4 Addition Operation

Finally, as an example of how to use these bitwise operations we implement
addition of two words within our model of computation. When implementing
addition in hardware the depth of the circuit has to be at least Ω(logd w) if the
fan-in is restricted to d. Addition is in NC1 [12] and we match the lower bound
using the procedure used by Cormen et al. [6, Sect. 29.2.2].

The basic idea is to use a parallel prefix circuit to compute all the carry
bits, c, first and then finally the sum is computed as the parity of a, b and c

(boolOp(XOR, c, boolOp(XOR, a, b))).
The carry bit ci depends on ai−1, bi−1 and maybe ci−1. If ai−1 = bi−1 = 0

then ci = 0 (we kill the carry bit), if ai−1 = bi−1 = 1 then ci = 1 (we generate
the carry bit), and if ai−1 
= bi−1 then ci = ci−1 (we propagate the carry bit).
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The notation of carry status (kill (k), generate (g), and propagate (p)) is used
by Cormen et al. and we can compute combined carry status of two consecutive
full adders using the carry status operator ⊗. The combined carry status is
propagate if both the operands are propagate, it is generate if either the second
operand is generate or the first is generate and the second is propagate, and
otherwise it is kill.

We encode the three values of the carry status xi using two bits (k = 00, p =
01, g = 10). Using this encoding it is easy to compute xi since xi0 = ai xor bi

and xi1 = ai and bi. Note, that we can compute both bits, in spite of the fact
that we deal with two different boolean operations, simultaneously as shown in
Fig. 2.4. Furthermore, we can do this simultaneously for all i.

As shown by Cormen et al. [6] the rest of the algorithm uses O(lg w) boolean
operations and shifts. We leave the details of the implementation to the reader.

5 Conclusion

The computation of the bitwise operations under the RAM model using O(1)
table lookups requires a table of size Ω(2w) while we have presented a solution
under the RAMBO model using only O(w) space still using only O(1) table
lookups. To support all the bitwise operations we used 4w + 96 bits of regular
memory and 6w bits of special RAMBO memory.

Furthermore, we also showed how to support simultaneous combinations of
boolean operations using 6w additional bits of ordinary memory per combi-
nation. To implement addition we took advantage of the combined boolean
operations and got a O(lg w) time solution.

To perform the bitwise operations we introduced four new variants of the
RAMBO model which are straightforward to implement in hardware. For a
discussion on how to implement new variants of the RAMBO model we refer the
interested reader to “Design of High Performance Memory Module on PC100”
by Leben et al. [13].

The address decoding for memory under the RAM model is in NC1 but not
in NC0. The address decoding for the twin memory is in NC0 while the address
decodings for line, tail and circle are in NC1.

Content-addressable memory (CAM) (also known as associative memory) [9]
is another technique where the memory structure is modified. CAM requires
additional hardware to handle processing of all memory cells in parallel. The
RAMBO variants, on the other hand, only requires modifications to the address
decoding.
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Multiprocess Time Queue

Andrej Brodnik ∗ † Johan Karlsson †

Abstract

We show how to implement a bounded time queue for two different pro-
cesses. The time queue is a variant of a priority queue with elements from
a discrete universe. The bounded time queue has elements from a discrete
bounded universe. One process has time constraints and may only spend
constant worst case time on each operation while the other process may
spend more time. The time constrained process only has to be able to
perform some of the time queue operations while the other process has to
be able to perform all operations. We show how to do a deamortization of
the deleteMin cost and to provide mutual exclusion for the parts of the
data structure that both processes maintain.

1 Introduction

In this paper we look at a special variant of the Priority Queue problem which
we call the Time Queue problem. A time queue is a queue that stores elements
together with a time stamp. Newly inserted elements must have a time stamp
that lies in the future. The time queue can be used in various ways. One task
might be as a time-out manager, where an element has to be processed before
some given time otherwise it should be considered to have timed-out and be
handled specially. The time queue can also be used for the simulation event set
problem [3] and other scheduling problems.

The time queue supports, given a set N of N elements, the ordinary op-
erations of a priority queue, insert, min and deleteMin. By convention the
highest priority has the lowest numerical value, hence min. We refer to the el-
ement with the minimum numerical priority value as the min element and use
t0 to denote its priority.

Usually a priority queue supports the decrease-key operation, which de-
creases the priority of an element in the queue. The increase-key operation
is also supported by the time queue and we combine these operations into a
general update operation, which updates the priority of an element.

Further, a general delete operation is also supported in the time queue.
Therefore, we let insert return a finger to the inserted element, which can be

∗Department of Theoretical Computer Science, Institute of Mathematics, Physics, and
Mechanics, Ljubljana, Slovenia

†Department of Computer Science and Electrical Engineering, Lule̊a University of Tech-
nology, Lule̊a, Sweden
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used by other operation such as delete and update. It is convenient that the
min operation also returns a finger. Since we use fingers we need operations to
get the priority and element from the finger, value and data respectively. In
this paper we use the terms element and finger to an element interchangeably.

Finally, the time queue supports deletion of all elements with a priority less
than a specific value, using the operation delLessThan. The delLessThan can
be augmented with an additional function, F , that is called for each deleted
element. Note that this forces the delLessThan to take Ω(d · F ) time where d
is the number of deleted elements and F is the running time of the function F .
Without loss of generality we assume that F = Θ(1).

In the time queue the priorities are times. We assume that time is a discrete
value and hence the time queue is restricted to only support priorities that are
discrete (e.g. integers). We require that for the time te of the newly inserted or
of the updated element e must hold te > t0, which means that the min time t0
is non-decreasing, the time queue is monotonic [12]. Moreover, we require that
the time for any element in the time queue is less than t0 + C, where C denotes
the maximum duration of any element (cf. maximum event duration [4]). To
sum up: time is drawn from a bounded discrete universe.

The above description gives the following formal definition:

Definition 3.1 The Time Queue problem is the problem of maintaining a set,
N , of elements to support the following operations:
insert(e,t):f Iff t0 < t ≤ t0 + C then let N := N ∪ {e} and return a

finger f to the newly inserted element.
delete(f) let N := N\{f}.
min():f Find the min element and return a finger, f , to it.
deleteMin() Delete the min element.
update(f,t) Iff t0 < t ≤ t0 + C then change the time of f to t.

delLessThan(t, F) Delete all elements with time less than t and call the
function ’F ’ for each of the deleted elements.

where t0 is the priority of the min element and C is the maximum duration of
any element.

This research was initiated by a manufacturer of a firewall. In their firewall
IP packets are processed in two different paths called fast and slow path. The
fast path must not be delayed when using the time-out manager and this process
needs only some of the operations of the time queue. The slow process has to
be able to perform all the operations, but it is not that time sensitive.

Hence, in our model, we have two different processes manipulating the data
structure. The first process (fast) has to be able to perform the min, value,
data and a restricted update operations. The second process (slow) has to be
able to perform all the operations on the time queue. The fast process is time
critical and must not be delayed, i.e. , the operations it uses must run in O(1)
worst case time. The fast process update only needs to update elements in the
near future, i.e. , only elements with current and new time less than t0 + ε (ε is
to be defined later).
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Our main goal is to implement the operations of the fast process to run in
O(1) worst case time, hence amortized or expected time is not good enough. To
do this, we let only the operations deleteMin and the delLessThan change the
min element. this makes the operations delete and update more restricted,
and, consequently, less complicated than deleteMin and the delLessThan. We
refer to the time queue problem with these restrictions as the restricted Time
Queue problem.

Furthermore, delLessThan is called by the slow, and this at least every c
time units for some small value c.

To allow the two processes to share data we need mutual exclusion of the
operations. For this we use locks and the interface to the locks has to provide
both blocking and non-blocking locking functions. We also assume that the
processes can pass messages asynchronously.

To compare different priority queues both theoretically and practically the
hold model [10] has been used. In this model a priority queue of size N is created
and a hold operation is performed a number of times. The hold operations is a
sequence of min; deleteMin; and insert operations, hence N is not changed.
The priority of the newly inserted element is t0 + d for some value d.

In the following section we look at how other solutions can be used to solve
the restricted time queue problem, in particular the Calendar Queue by Brown
[3]. In Sect. 3 we present our solution, a modification of the calendar queue, to
support the operations of the fast process while Sect. 4 concludes the paper.

2 Previous work

A number of solutions for the priority queue problem can be used to solve
the time queue problem for one process with only small modifications if any.
The standard heap described by Williams [18] can be modified to use fingers
by adding a dictionary that stores the position in the heap for each element.
The heap solution (heap in Table 3.1) even works if the maximum duration
is unbounded and it only needs O(N) space. The model used is the pointer
machine model [11].

Van Emde Boas et al. proposed a data structure they call a stratified tree
which supports the time queue operations in O(lg lg C) time (vEB in Table 3.1)
[13, 14]. However, the stratified tree needs O(C + N) space. The model is the
pointer machine model.

Willard shows how perfect hashing (see [6, 8]) can be used to improve the
space bound to O(N) for the stratified tree [17] (vEB-W in Table 3.1). The
model is the RAM model [15] of the stronger cell probe model [19] due to the
hashing.

More recently Andersson and Thorup improved their exponential search trees
to achieve worst case performance of O(

√
lg N/ lg lg N) [1] (EST in Table 3.1).

The model used here is the RAM model.
Brodnik et al. showed how a split tagged tree can be used to achieve worst

case constant time for all the time queue operations (SST in Table 3.1) [2].
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They use O(C + N) space in the Yggdrasil implementation [2] of the RAMBO
model [9].

So far we have seen the bounds in Table 3.1, with the Calendar queue (CQ)
presented below.

Operation Heap vEB vEB-W
insert O(lg N) O(lg lg C) exp O(lg lg C)
delete O(lg N) O(lg lg C) exp O(lg lg C)
min O(1) O(1) O(1)
deleteMin O(lg N) O(lg lg C) exp O(lg lg C)
hold O(lg N) O(lg lg C) exp O(lg lg C)
update O(lg N) O(lg lg C) exp O(lg lg C)
Space O(N) O(C + N) O(N)

Operation EST STT CQ

insert O(
√

lg N/ lg lg N) O(1) am O(1)

delete O(
√

lg N/ lg lg N) O(1) am O(1)

min O(1) O(1) O(1)

deleteMin O(
√

lg N/ lg lg N) O(1) am exp O(1)

hold O(
√

lg N/ lg lg N) O(1) exp O(1)

update O(
√

lg N/ lg lg N) O(1) O(1)

Space O(N) O(C + N) O(N)

Table 3.1: Time bounds for different solutions to the Time Queue problem

2.1 The Calendar Queue

The Calendar Queue data structure described by Brown [3] and analyzed by
Erickson et al. [7] is a priority queue specially designed for the event set problem.
Erickson et al. give a short and good description of the calendar queue that we
restate here.

“A calendar queue has M buckets numbered 0 to M − 1, a current bucket
with index i0, a bucket width δ, and a current time t0. We have the relationship
that i0 = (t0 div δ) mod M . For each element e in the calendar queue, te ≥ t0,
and element e is located in bucket i if and only if i ≤ (te divδ)modM < (i+1).”

The calendar queue is implemented as an array of lists, which we denote
buckets. Depending on bucket discipline the lists in the buckets are either
sorted or unsorted. In unsorted buckets insert takes constant time and min

takes time proportional to the number of elements in the bucket. On the other
hand, in sorted buckets min (deleteMin) takes constant time and insert time
proportional to the log of the number of elements in the bucket. In Brown’s
and Erickson’s descriptions all buckets use the same bucket discipline.

Brown [3] suggests to use a doubling technique to adjust the number of
buckets M to be Θ(N) where N is the number of elements in the queue. Hence,
when inserting an element and N becomes greater than M , we allocate 2M
new buckets, copy all the elements to the new buckets and deallocate the old
buckets. When deleting an element and N becomes less than M/4, we allocate
M/2 buckets, copy all the elements and deallocate the old buckets. We see that,
if a doubling of the number of buckets occurs when there are N0 elements, at
least N0 new elements has to be inserted into the queue before the next doubling
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will occur. Hence the copying cost of the 2N0 elements at the second double
can be charged to the insertion of the N0 elements. Similarly for deletes and the
copying cost when halving the number of buckets. The bucket width δ should
be adjusted to match the average distance between elements in the queue in
order to get an expected constant number of elements in each bucket. Hence,
insert and delete can be done in expected O(1) amortized time. Brown gave
empirical evidence that the calendar queue achieves expected constant time for
the hold operation. In other words, if we choose δ and M properly, the number
of elements in each bucket will be O(1).

Erickson et al. (see “Optimizing Static Calendar Queues” [7] for details,
Static here means that the number of elements in the queue is unchanged, not
that all events have to be known in advance) analyzed the calender queue with
unsorted buckets. They describe how to choose δ and M under the assumption
that only the hold operation is used (the case for which Brown gave empirical
evidence). The value d in the hold operations is here defined by a random
variable with probability density e. In essence, choose δ =

√
2 μ

N where μ is a
function of e. Using this bucket width and infinitely many buckets the expected
time is constant for the hold operation. Given a maximum duration C, choosing
M ≥ C div δ + 1 will guarantee no loss of performance over choosing infinitely
many buckets. If a small degradation of the performance is acceptable one can
choose M = rN , where r depends on the allowed degradation.

A variation of the time queue problem has been studied by Varghese and
Lauck [16]. They look at the problem of providing a timer facility for an oper-
ating system. In the timer facility problem the delLessThan operation is called
once for each time t (i.e. , c = 1). Also even if t < t0. The solution suggested
by Varghese and Lauck, called Hashed and Hierarchical Timing Wheel, is very
similar to the Calendar Queue.

3 Our Solution

We will now modify the calendar queue to achieve O(1) worst case time for the
min, update, value and data operations, and see under what conditions we can
expect deleteMin and delLessThan to run in O(1) time per deleted element.
As Erickson et al. we will use the unsorted bucket discipline to achieve O(1)
worst case time for insertion into a bucket. We use lists of doubly linked nodes
in each bucket and let a finger be a reference to the node that stores the element.
Given a finger to the element, this achieves O(1) worst case time for deletion in
a bucket.

As pointed out by Thorup [12] we can always, in any monotonic priority
queue, make the min operation run in O(1) worst case time by remembering the
element (and its priority) that was deleted by the last deleteMin and consider
it part of the priority queue. We implement this by letting deleteMin find the
element that will be min when the current min is deleted and store a finger to
this element.

Since an update is a delete followed by an insert, if we can support delete
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and insert in O(1) worst case time we also have update in O(1) worst case
time. The reason for the amortization in the calendar queue is the copying of
elements when M is changed. If we never need to copy any elements during an
insert (delete) the time for these operations is worst case. Hence, if M and
δ are fixed the copying is never needed and we achieve O(1) worst case time for
the min, update, value and data operations.

Under what conditions can we expect deleteMin to run in O(1) time, and
can we improve these conditions in some way? The approach with fixed M and
δ is what Brown started with in his description of calendar queue. He noted
that this will lead to inefficient space use if N << M . Moreover, if N << M ,
deleteMin may have to search many empty buckets to find the next element,
deleteMin takes O(M) time in the worst case. On the other hand, if N >> M ,
the current bucket may contain many elements, deleteMin takes O(N) time in
the worst case. However, on the average O(M/N +N/M) time is needed. From
the discussion above we conclude that we can expect O(1) time for deleteMin
if N = Θ(M) and the elements are evenly distributed among the buckets.

To improve these conditions we will focus on the case where N = Ω(M), and
the main problem of deleteMin is to find the next element in the current bucket.
Since the elements in the buckets are unsorted it takes time proportional to the
number of elements in the bucket to find the new min.

One way of reducing the time could be to keep the current bucket sorted, then
deletion of the min element in the bucket would take O(1) time. Each element
would then be involved in one sorting and the amortized cost per element would
be s(k) where s(k)k is the cost of sorting k elements (cf. equivalence between
sorting and priority queues [12]). This makes update of elements within the
bucket i0 too expensive for the fast process.

Instead, we use δ buckets of width 1, implemented as an array of doubly
linked lists denoted head. We store the elements of the current bucket i0 in
head[j] where j = te mod δ. Hence, each list in the head only stores elements
with the same priority. Now update, insert, delete and min are still O(1) in
the worst case even though the constant is a bit higher.

In the analysis of deleteMin we denote the number of elements in a bucket
i by Bi and the number of elements in the head by H . Finding the new min in
the head is similar to finding the next non empty bucket in the calendar queue,
which is done in O(M/N) time on the average. Hence in a head with more
than one element it takes O(δ/H + 1) time on the average. If H = Ω(δ) this is
O(1). When the last element of the head is deleted, and all the δ buckets are
empty, we need to move all the Bi0+1 elements of bucket i0+1 into the head and
increase i0 by one. The cost of the copying is O(Bi0+1), which indicates that
the worst case cost of deleteMin is O(N). However in an amortized analysis
the cost of copying an element can be charged to the operation that deletes the
element from the head, which makes the amortized time O(1) for deleteMin.

Finally, we do a deamortization of the deleteMin operation to achieve O(1)
expected time instead of amortized time. The deamortization is done by using
a second head denoted head2 and move �Bi0+1/H elements from bucket i0 + 1
into head2 in each deleteMin operation. When the last element is deleted from
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the head the rest of the elements are moved from bucket i0 + 1 into head2 and
the two heads are swapped. If an element should be inserted (updated) into
bucket i0 + 1 it will instead be inserted into head2. Hence Bi0+1 will never
increase and therefore the number of elements in bucket i0 + 1 will be O(1)
when the last element is deleted from the head. If H = Ω(Bi0+1) the cost is
O(1) for copying the elements.

Now if N = Ω(M), H = Ω(δ) and H = Ω(Bi0+1) we have O(1) expected
time for deleteMin. If not, the time for deleteMin and hold is exp O(M/N +
Bi0+1/H + δ/H) and O(M + N + δ) worst case. If we choose δ = Θ(M) the
above conditions reduce to H = Ω(δ) (since N ≥ H) and H = Ω(Bi0+1) where
the second condition depends on the distribution of the elements among the
buckets.

Now let us see what conditions are needed if a sequence of delLessThan
calls are used instead of deleteMin. First we note that O(δ/c) calls are made
between two changes of heads. Consequently, if �Bi0+1/(δ/c) elements are
moved each time delLessThan is called, all the elements in bucket i0 + 1 will
be moved to the second head before the next head swap. If δ = Ω(Bi0+1) then
only a constant number of elements are moved each time. If the min element is
deleted, delLessThan needs to find the next element to be min which is done in
O(1) time on the average if H = Ω(δ). However, assume that p empty buckets
have to be scanned to find the next element to be min, when the min element
is deleted, then approximately p/c delLessThan calls are made before the min
is deleted again. Hence on the average c buckets are scanned by delLessThan

even if H = o(δ). Note that this is true even if we need to scan the buckets

array to find the next non empty bucket. The condition we are left with is
δ = Ω(Bi0+1) which is fulfilled if there is only a constant number of elements
with equal priority.

Since we know the maximum duration C of all the elements, we can choose
δ and M to cover this range, hence C = Mδ. We choose M, δ = O(

√
C) to have

δ = Θ(M). This gives a space bound of O(
√

C+N) since the number of buckets
and the number of buckets in the heads are O(

√
C). We note that when using

δ = M =
√

C both mod
√

C and div
√

C can be computed fast if C = 2h and

even if C 
= 2h the approximation δ = 2
lg C

2 is good enough. The above analysis
leads to the time and space bounds in Table 3.2.

Operation Our modified CQ
insert O(1)
delete O(1)
min O(1)
deleteMin exp O(1) if H = Ω(δ), H = Ω(Bi0+1)
hold exp O(1) if H = Ω(δ), H = Ω(Bi0+1)
update O(1)
delLessThan exp O(1) if δ = Ω(Bi0+1)

Space O(
√

C + N)

Table 3.2: Time bounds and space for our solution to the Time Queue problem
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3.1 Representation and Algorithms

The data structure consists of buckets, two heads of buckets, a finger to the min
element and an index into the current bucket (see Alg. 3.1 and Fig. 3.1 for an
example). Both the buckets and the two heads of buckets are arrays of lists of
doubly linked nodes. We let a finger be a reference to a node.

typedef void * Element;

typedef struct node {
struct node * prev;

struct node * next;

Element e;

int t;

Bool inHead;

} NODE,

typedef struct list {
NODE * first;

NODE * last;

int nrOfElements;

} LIST;

typedef struct tq {
LIST buckets[M];

LIST head[δ]; int H;

LIST head2[δ]; int H2;
NODE * min;

int i0;
} TQ;

Algorithm 3.1: Representation of the Time Queue

We first look at the algorithms for only one process (the slow one) and later
see what modifications are needed for the fast process.

• During insert (Alg. 3.3) we calculate the bucket index for the new ele-
ment and check if the element should be in either of the heads. If it is we
calculate the head index j and insert the new element at the end of the
list, otherwise we insert it at the end of the list of the proper bucket.

• In the delete (Alg. 3.4) we have the finger the element and we can easily
delete it from the appropriate list. If it is the last element in the list we
mark the bucket as empty.

• The update (Alg. 3.5) is, as said, a deletion followed by an insertion.

• The min returns the stored min finger.

• The deleteMin (Alg. 3.6) first deletes the min element. Then it searches
for the next element that should be min and updates the min reference.
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Figure 3.1: Time Queue representation with: C = 16, N = 9, M = δ = 4,
B0 = 1, B1 = 0, B2 = 2, B3 = 3, H = 2, H2 = 1, t0 = 5 and i0 = 1

Finally, the routine moves some of the elements from the next bucket into
head2.

If the deleted element was the last element in the head, it first search
for the next non empty bucket, moves the remaining elements from that
bucket to head2, swaps the two heads, and increases i0. Then it continues
with the search for the next element to be min.

• As long as the time t0 of the min element is less than the specified time,
delLessThan (Alg. 3.8) gets min, calls the function F on it, deletes it and
finds the new min. Finally, it moves some elements from the next bucket
into head2.

If delLessThan deletes the last element in the head it search for the next
non empty bucket, moves the remaining elements from that bucket to
head2, swaps the two heads, and increases i0.

• The operations to get the data and time from a finger, data and value

respectively, only returns the data and time from the linked list node.

3.2 Support for Concurrent Processes

We assume that there are just two processes: one fast process and one slow
process. The fast process only has to update elements in the near future ε while
the remaining updates are sent to the slow process. Without loss of generality
we assume that ε ≤ δ and hence only elements in bucket i0 and bucket i0+1 may
be updated by the fast process. The elements in bucket i0 are stored in head

while the elements in bucket i0 +1 may be in both buckets[i0 + 1] and head2.
We will use three locks to ensure mutual exclusive access to these entities. The
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assumption that ε ≤ δ is not really a restriction since if this is not true we only
need to add more locks for the buckets that need protection.

Whenever head, H, i0 or min is read or written we acquire headLock. Sim-
ilarly for head2Lock and bucketLock. Since only the slow process modifies i0
and min it does not need to acquire the headLock in order to read these vari-
ables. The fast process always has to acquire the corresponding lock. Alg. 3.9
shows the deletion by the slow process with the proper locks. To avoid dead-
locks, we choose to break the circular chain condition by imposing a linear order
of the locks [5]. If a process needs more than one lock it has to acquire them
in the following order: headLock, head2Lock and bucketLock. The representa-
tion of the time queue includes these locks (Alg. 3.2). The update (Alg. 3.10)

typedef struct tq {
LIST buckets[M];

LIST head[δ]; int H;

LIST head2[δ]; int H2;
NODE * min;

int i0;
LOCK headLock;

LOCK head2Lock;

LOCK bucketLock;

} TQ;

Algorithm 3.2: Representation of the Time Queue with locks

for the fast process is only allowed to move elements to/from the heads and
corresponding buckets. If the element should be moved to/from another bucket
it passes a request to the slow process.

If there are more than one process of each kind special care is needed for the
slow processes. We need also to acquire the lock when reading variables in the
slow process and have locks for all the different parts of the time queue data
structure. More than one fast process can be handled without any special care.

4 Conclusion

We have proposed a solution for two different processes to simultaneously main-
tain a time queue. One of the processes performs only a subset of the operations
in O(1) worst case time, while the other process shall perform all operations.
All operations except deleteMin and delLessThan are performed in O(1) worst
case time. deleteMin is performed in O(1) expected time and delLessThan is
performed in O(1) expected time per deleted element.

The main difference from the Hashed and Hierarchical Timing Wheels by
Varghese and Lauck [16] is the deamortization of the deleteMin and the con-
current solution.

Furthermore, we have shown how to allow one fast and one slow process to
maintain our data structure by using locks to provide mutual exclusion.
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A Pseudo Code

The time queue, TQ, (Alg. 3.1 and Alg. 3.2) consists of the arrays, buckets,head,
and head2, of lists. These lists are doubly linked lists and each list has a
counter, nrOfElements, of the number of elements in it. The lists consists of
nodes, NODE, which stores the element and its time together with an indication,
inHead, whether the element is in either of the two heads or not. The node also
stores references to its neighbours in the list. The TQ also stores the number of
elements in each of the two heads, H and H2 respectively. Further the current
bucket index, i0, indicates in which of the buckets the min element is. It also
has a reference, min, to the node storing the min elements and its priority.
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NODE *

insert(TQ tq, Element e, int t) {
int bucket, index;

NODE *n;

Create new node

n = createNode();

n->e = e;

n->t = t;

n->next = n;

n->prev = n;

n->inHead = false;

bucket = (n->t div δ) mod M;

index = n->t mod δ;
if (bucket == tq.i0) {
Append n at the end of tq.head[index]

if (tq.head[index].last != NULL) {
tq.head[index].last->next = n;

n->prev = tq.head[index].last;

n->next = tq.head[index].last->next;

} else {
tq.head[index].first = n;

}
tq.head[index].last = n;

tq.head[index].nrOfElements++;

n->inHead = true;

tq.H++;

} else if (bucket == ((tq.i0+1) mod M)) {
Append n at the end of tq.head2[index]

n->inHead = true;

tq.H2++;

} else {
Append n at the end of tq.buckets[bucket]

}
return n;

}

Algorithm 3.3: Insertion into Time Queue
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void

delete(TQ tq, NODE * finger) {
int bucket, index;

bucket = (finger->t div δ) mod M;

if (finger->next == finger) { /* Last element in list */

if (!finger->inHead) {
Clear list tq.buckets[bucket]

tq.buckets[bucket].first = NULL;

tq.buckets[bucket].last = NULL;

tq.buckets[bucket].nrOfElements = 0;

} else {
index = finger->t mod δ;
if (bucket == tq.i0) {

Clear list tq.head[index]

tq.H--;

} else { /* (bucket == ((tq.i0+1) mod M)) */

Clear list tq.head2[index]

tq.H2--;

}
}

} else {
Remove node from its list

finger->next->prev = finger->prev;

finger->prev->next = finger->next;

if (!finger->inHead) {
tq.buckets[bucket].nrOfElements--;

} else {
index = finger->t mod δ;
if (bucket == tq.i0) {
tq.head[index].nrOfElements--;

tq.H--;

} else { /* (bucket == ((tq.i0+1) mod M)) */

tq.head2[index].nrOfElements--;

tq.H2--;

}
}

}
free(finger);

}

Algorithm 3.4: Deletion from Time Queue
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void

update(TQ tq, NODE * finger, int t) {
int bucket, index;

bucket = (finger->t div δ) mod M;

if (finger->next == finger) { /* Last element in list */

if (finger->inHead == false) {
Clear list tq.buckets[bucket]

} else {
index = finger->t mod δ;
if (bucket == tq.i0) {
Clear list tq.head[index]

} else { /* (bucket == ((tq.i0+1) mod M)) */

Clear list tq.head2[index]

}
}

} else {
Remove node from its list

}
finger->t = t;

finger->inHead = false;

bucket = (finger->t div δ) mod M;

index = finger->t mod δ;
if (bucket == tq.i0) {
Append finger at the end of tq.head[index]

finger->inHead = true;

tq.H++;

} else if (bucket == ((tq.i0+1) mod M)) {
Append finger at the end of tq.head2[index]

finger->inHead = true;

tq.H2++;

} else {
Append finger at the end of tq.buckets[bucket]

}
}

Algorithm 3.5: Updates in Time Queue
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void

deleteMin(TQ tq) {
int bucket, index;

int n, j;

NODE *finger;

LIST *head;

Delete the min element

finger = min(tq);

j = finger->t mod δ
delete(finger);

finger = NULL;

if (tq.H == 0) { /* Last element in head deleted */

Find next non empty bucket

if (tq.H2 != 0) {
bucket = (tq.i0 +1) mod M;

} else {
bucket = (tq.i0 +1) mod M;

while ((tq.buckets[bucket].nrOfElements == 0) &&

(bucket != tq.i0)) {
bucket = (bucket+1) mod M;

}
}
if (bucket == tq.i0) { /* No more elements */

tq.min = NULL;

return;

}
Move all elements in buckets[bucket] to head2

while (tq.buckets[bucket].nrOfElements > 0) {
finger = tq.bucket[bucket].first;

update(tq, finger, finger->t);

}
Swap heads

head = tq.head;

n = tq.H;

tq.head = tq.head2;

tq.H = tq.H2;

tq.head2 = head;

tq.H2 = n;

Increase i0
tq.i0 = bucket;

j = 0;

}
continued in Alg. 3.7

Algorithm 3.6: Deletion of min from Time Queue
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Search for next min

while (tq.head[j].nrOfElements == 0) {
j++;

}
Update the min reference

tq.min = tq.head[j].first;

Move Bi0+1/H elements from bucket i0 + 1 to head2

bucket = (tq.i0 +1) mod M;

for (i = 1;

i <= �tq.buckets[bucket].nrOfElements/tq.H�;
i++) {

finger = tq.buckets[bucket].first;

update(tq, finger, finger->t);

}
}

Algorithm 3.7: Deletion of min from Time Queue (cont.)

void

delLessThan(TQ tq, int t, func F) {
NODE *finger;

int bucket;

int index;

int i, n;

LIST *head;

while (t < min()->t) {
F(min());

Delete the min element

if (tq.H == 0) { /* Last element in head deleted */

Find next non empty bucket

Move all elements in buckets[bucket] to head2

Swap heads

Increase i0
}
Search for next min

Update the min reference

}
Move Bi0+1/(δ − (t mod δ)) elements from bucket i0 + 1 to head2

}

Algorithm 3.8: Deletion of all elements with time less than t from Time Queue
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void

delete(TQ tq, NODE * finger) {
int bucket;

LOCK *l;

bucket = (finger->t div δ) mod M;

if (!finger->inHead) {
if(bucket == ((tq.i0+1) mod M)) {
l = bucketLock;

} else {
l = NULL;

}
} else {

if (bucket == tq.i0) {
l = headLock;

} else { /* (bucket == ((tq.i0+1) mod M)) */

l = head2Lock;

}
}
Acquire(l, BLOCK);

Delete as in Alg. 3.4

Release(l);

free(finger);

}

Algorithm 3.9: Deletion from Time Queue with Mutual Exclusion
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void

update(TQ tq, NODE * finger, int t) {
int bucket, bucket2, index;

bool gotH2Lock = false;

bool gotbucketLock = false;

if (Acquire(headLock, NOBLOCK)) {
bucket = (finger->t div δ) mod M;

bucket2 = (t div δ) mod M;

if (!(((bucket == i0) || (bucket == (i0 + 1 mod M))) &&

((bucket2 == i0) || (bucket2 == (i0 + 1 mod M))))) {
Release(headLock);

goto SEND;

}
if (((bucket == (i0 + 1 mod M)) && finger->inHead) ||

(bucket2 == (i0 + 1 mod M))) {
if (Acquire(head2Lock, NOBLOCK))

gotH2Lock = true;

else {
Release(headLock);

goto SEND;

}
}
if ((bucket == (i0 + 1 mod M)) && !finger->inHead) {

if (Acquire(bucketLock, NOBLOCK))

gotbucketLock = true;

else {
if (gotH2Lock)

Release(head2Lock);

Release(headLock);

goto SEND;

}
}
Update as in Alg. 3.5

if (gotbucketLock)

Release(bucketLock);

if (gotH2Lock)

Release(head2Lock);

Release(headLock);

return;

}
SEND: /* Send request to the slow process */

SendMesg(update, tq, finger, t);

}

Algorithm 3.10: Fast process updates in Time Queue



www.manaraa.com

62 On Data Structures and Memory Models



www.manaraa.com

Paper 4

Worst Case Constant Time
Priority Queue

63



www.manaraa.com

Don’t underestimate the value of Doing Nothing, of just going along, listening
to all the things you can’t hear, and not bothering.

Winnie the Pooh

Reformatted version of paper published as

Andrej Brodnik, Svante Carlsson, Michael L. Fredman, Johan Karlsson and J. Ian
Munro, Worst Case Constant Time Priority Queue. In Journal of System and Soft-
ware, 78(3):249-256, December 2005.

64



www.manaraa.com

Worst Case Constant Time Priority Queue

Andrej Brodnik ∗†‡ Svante Carlsson §

Michael L. Fredman ¶ Johan Karlsson ∗ J. Ian Munro ‖

Abstract

We present a new data structure of size 3M bits, where M is the size of the
universe at hand, for realizing a discrete priority queue. When this data
structure is used in combination with a new memory topology it executes
all discrete priority queue operations in O(1) worst case time. In doing so
we demonstrate how an unconventional, but practically implementable,
memory architecture can be employed to sidestep known lower bounds
and achieve constant time performance.

1 Introduction

In this paper we reexamine the well known “discrete priority queue” problem
of van Emde Boas et al. [18]. Operating over the bounded universe of integers
M = [0, .., M − 1], the usual operations of Insert and ExtractMin are sup-
ported, as are the additional operations of finding and removing any value, and
finding Predecessor(e) and Successor(e). The last two operations determine,
respectively, the largest element present that is less than e, and the smallest
greater than e. The problem is referred to by Mehlhorn et al. [14] as the union-
split-find problem. Under this terminology, one thinks of [0, .., M − 1] as being
partitioned into subranges that can be further subdivided or merged, and that
one can ask for the subrange containing a given value. We revert to the prior-
ity queue analogy and terminology of van Emde Boas et al. and more formally
define the data type as:

Definition 4.1 The discrete extended priority queue problem is to maintain
a set, N of size N , with elements drawn from an ordered bounded universe
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M = [0..M − 1], and support the following operations:
Insert(e) N := N ∪ {e}
Delete(e) N := N\{e}
Member(e) Return whether e ∈ N
Min Find the smallest element of N
Max Find the largest element of N
DeleteMin Delete the smallest element of N
DeleteMax Delete the largest element of N
Predecessor(e) Find the largest element of N less than e
Successor(e) Find the smallest element of N greater than e

We will refer to the predecessor of an element e as its left neighbor and the
successor as its right neighbor. When talking about the neighbors of e we mean
the left and the right neighbor. The static version of the problem does not
include the Insert, Delete, DeleteMin, and DeleteMax operations, instead
the set may be preprocessed. We let m denote lg M .

1.1 Lower Bounds and some Matching Upper Bounds

Under the pointer machine model (cf. [17]) Mehlhorn et al. [14] proved a lower
bound of Ω(lg lg M) for the discrete priority queue problem. The stratified
tree by van Emde Boas et al. provides a matching upper bound [18]. More
recently, Beame and Fich [3] gave a lower bound, for the static version, of
Ω(min((lg lg M/ lg lg lg M),

√
lg N/ lg lg N)), when restricting the memory usage

to NO(1), under the communication game model (cf. [15, 20]) which also applies
to the cell probe (cf. [21]) and RAM (cf. [19]) models. This lower bound implies
the same lower bound for the dynamic version. They also gave a matching upper
bound, in the RAM model and hence the communication game and the cell probe
models, for the static version of the problem. Andersson and Thorup [2] gave
a data structure and an algorithm with O(

√
lg N/ lg lg N) worst case time for

the dynamic version. For the static case, Brodnik and Munro [6] gave a data
structure with O(1) worst case time for any N but using O(M) space. On the
other hand, Ajtai et al. [1] presented a solution using only O(N) space when
N = O(M1/p).

1.2 Model of Computation

Our goal is to sidestep these lower bounds, but to retain a practically imple-
mentable model of computation. Our model is based on the RAM model of
computation which includes branching and the arithmetic operations addition
and subtraction. We will also need bitwise boolean operations and multiplica-
tion (cf. MBRAM [19]). However, we do not want the model to be unrealistic
and therefore we restrict the model to only use bounded registers. The regis-
ters we use are at least m bits wide; i.e. a given memory location can store at
least m-bit values and all operations are defined for arguments with at least m
bits. For fixed m, this model of computation is implemented by any standard
computer today.
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Operations to search for Least (Most) Significant Bit (LSB, MSB) in a reg-
ister can be implemented to run in O(1) time in our model, using a technique
called Word-Size-Parallelism [4] (also, see [11]). Hence, we let these operations
be defined in the model as well. Alternatively, the use of O(M ε) extra bits
permits such queries to be answered in constant time by simple table lookup.

The final aspect, and the crucial twist, of our model of computation is the
notion of a word of memory. Under the standard model, a word is a sequence of
bits and each bit is in one word only. We will consider a model in which a single
bit may be in several different words. The notion of a “random access machine
with byte overlap”, RAMBO, was introduced by Fredman and Saks [10]. The
way the bits occur, in the part of the memory where bytes overlap, has to be
specified as part of the model variant.

We consider a variant which we refer to as Yggdrasil (see Sect. 2.3). The part
of the memory where bytes overlap has been developed in hardware by Priqueue
AB, as a SDRAM memory module according to the PC100 standard [13].

2 The Split Tagged Tree

In this section we introduce an abstract data structure Split Tagged Tree (STT)
used to solve the discrete extended priority queue problem. We first define the
STT and describe its properties, and later use these properties to implement
the operations from Definition 4.1.

2.1 The Split Tagged Tree and its properties

In a complete binary tree that has leaves for every element in a universe M (cf.
trie with leaves 0..M − 1 numbered from left to right, and leaves corresponding
to elements of N are ”tagged”) we define:

Definition 4.2 An internal node is a splitting node if there is at least one
tagged leaf in each of its subtrees. The splitting node ν is a left splitting node
of e if e is a leaf in the left subtree of ν. The first left splitting node on the path
from e to the root is the lowest left splitting node of e. Right splitting nodes
and the lowest right splitting node of e are defined symmetrically.

Note that the splitting nodes are the nodes that appear in a path compressed
trie (cf. PATRICIA trie [16]).

The splitting nodes (black nodes in Fig. 4.1) are the only internal nodes of
the STT that store additional information. In detail:

Definition 4.3 A Split Tagged Tree is a complete binary tree on M in which:

• Each leaf representing an element of N is tagged.

• A splitting node is tagged and has additional references to the leaves rep-
resenting the largest element x in its left subtree and the smallest element
y in the right subtree, where x, y ∈ N .
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• There is a special supernode, placed on top of the tree. This supernode is
tagged if the set contains at least one element. If the supernode is tagged, it
contains references to the leaves representing the maximum and minimum
elements.

There are two key aspects of this definition. First, note that a splitting node has
references to its “inside” tagged leaves — the leftmost leaf in the right subtree
and rightmost leaf in the left subtree. These two leaves are actually neighbors.
Second, we consider the supernode as both a left and a right splitting node
for all the elements in the universe. Hence, all elements, even minimum and
maximum, have both left and right splitting nodes. This actually simplifies the
operations on the STT because the supernode has a role similar to the sentinel
in a linked list.

10 2 4 6 7 10 11 12 13 149 1553 8

Figure 4.1: A Split Tagged Tree for N = {3, 5, 8, 9, 15} and M = 16.

Since leaves represent elements of M, we will refer to the leaves and the
corresponding elements interchangeably.

The only information required in a leaf is its tag, hence a Boolean array
suffices for the leaves. As a consequence, references to leaves are simple indices
into the array, or simply the element value. On the other hand, the internal
nodes and the supernode consist of two references and a tag. The nodes can
be stored in an array, in standard heap order (the root maps to location 1 and
the children of the node mapping to location i are mapped to locations 2i and
2i + 1). The supernode is stored at the location 0.
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The split tagged tree is somewhat similar to the stratified tree presented by
van Emde Boas et al. [18]. A key feature of the stratified tree is that nodes
are tagged in a manner such that the lowest tagged ancestor of a tagged leaf
can be found by a binary search. This property does not need to hold for the
STT as we will use a novel memory architecture to permit constant time search
and still find the analogous nodes. The STT does, however, have a number of
crucial properties.

Lemma 4.1 Let e ∈ N and let νl and νr be its lowest left and lowest right
splitting nodes respectively. Then, νl is the only left splitting node of e that
refers to e, and νr is the only right splitting node of e that refers to e.

Proof: The proof is given in terms of the left splitting node. The proof for
the right splitting node is symmetric.

First, we show that νl refers to e. From Definition 4.3 we know that an
element is referred to by a splitting node if it is the largest element in the left
subtree of the node. Thus, it suffices to demonstrate that e is the largest element
of N in the left subtree of νl. Assume to the contrary that an element z ∈ N
exists such that z 
= e is the largest element in the left subtree of νl. Since both
e and z are in the left subtree of νl, the lowest common ancestor ν of e and z,
is also in the left subtree of νl (see Fig. 4.2). By Definition 4.2, ν is a splitting
node. Moreover, since e < z, ν is a left splitting node of e which contradicts
our initial assumption that νl is the lowest left splitting node of e.

Finally, no other left splitting node ν′ of e (necessarily higher) can refer to
e since the right subtree of νl contains an element z′ ∈ N (see Fig. 4.2). The
element z′ has prior claim to being referred to by ν′ since e < z′. QED

e

νl

ν′

z z′

ν

Figure 4.2: The element e is only referenced by the lowest left splitting node νl

of its left splitting nodes (e, z′ ∈ N , z 
∈ N ).
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Lemma 4.1 states that in the STT there are exactly two nodes that have
references to an element in N , namely, its lowest left and lowest right splitting
nodes. We proceed by showing how to find the neighbors in N of an arbitrary
leaf e of M.

Lemma 4.2 Let νl and νr be the lowest left and lowest right splitting nodes of
e ∈ M respectively. Further, let x ∈ N be the left neighbor of e, hence x < e.
Then, if e ∈ N a reference in νr refers to x, and if e 
∈ N then either a reference
in νl or in νr refers to x.

If we instead let x ∈ N be the right neighbor of e, then if e ∈ N a reference
in νl refers to x, and if e 
∈ N then either a reference in νl or in νr refers to x.

Proof: Again we focus on the left neighbor and the proof for the right
neighbor is symmetric.

If e ∈ N , the lowest common ancestor ν of x and e is a splitting node and
has references to both x and e, since x and e are neighbors. The node ν is a
right splitting node of e since x < e. Since νr cannot be above ν, νr must also
refer to x. But then Lemma 4.1 implies that ν and νr are the same.

If e 
∈ N , let y ∈ N be the right neighbor of e, hence x < e < y, and let ν be
the lowest common ancestor of x and y. By definition, ν is also a splitting node,
and since x < e < y it is a splitting node on the path from e to the root. Since
x and y are neighbors in N , x is the largest element of N in the left subtree of
ν and y is the smallest element of N in the right subtree of ν. Consequently,
ν has a reference to x, which is the left neighbor of e. Now assume that ν is a
right splitting node of e. Since νr cannot be above ν, νr must also refer to x.
But then Lemma 4.1 implies that ν and νr are the same. Similarly, if ν is a left
splitting node it has to be νl. QED

Finally, we show that for the insertion of an element e, it is sufficient to find
either the lowest left or the lowest right splitting node of e, to decide where the
new splitting node shall be (see Fig. 4.3). We start with the lemma in terms of
the left splitting node:

Lemma 4.3 Let νl be the lowest left splitting node of e 
∈ N and let z ∈ N be
the largest element in the left subtree of νl. Let ν be the lowest common ancestor
of z and e. If z < e then the right subtree of ν is empty, and if e < z then the
left subtree of ν is empty.

Proof: For the case z < e (see Fig. 3(a)), assume there is an element g ∈ N
in the right subtree of ν. Then z < g since z is in the left subtree of ν. Since z
and e are in the left subtree of νl, so is ν, and therefore g is likewise. But since
g > z, this contradicts the assumption that z is the largest element of N in the
left subtree of νl and hence there is no element in the right subtree of ν.

For the case e < z (see Fig. 3(b)), assume an element g ∈ N exists in the
left subtree of ν. Then, by Definition 4.2, ν is a splitting node. Since e and z
are in the left subtree of νl, ν has to be in the left subtree of νl. Hence ν is
lower than νl and ν is a left splitting node of e contradicting the assumption
about νl. Consequently, there is no element in the left subtree of ν. QED
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νr

νl

ν

z e

(a) case z < e

νl

νr

ν

e z

(b) case e < z

Figure 4.3: The two scenarios before insertion of e.

Lemma 4.4 Let νr be the lowest right splitting node of e 
∈ N and let z ∈ N
be the smallest element in the right subtree of νr. Let ν be the lowest common
ancestor of z and e. If z < e then the right subtree of ν is empty, and if e < z
then the left subtree of ν is empty.

Proof: This proof is symmetric to the proof of Lemma 4.3. QED

2.2 Operations on the Split Tagged Tree

We proceed to describe how to answer queries and perform updates in the STT.
Predecessor and successor queries can be answered using Lemma 4.2. In a binary
tree there are always n− 1 internal nodes when there are n leaves. In the STT
there are as many internal splitting nodes as there are internal nodes in a binary
tree and since we have the supernode as an additional splitting node we have
n splitting nodes when there are n leaves. Hence, at an insertion of element
e 
∈ N , exactly one internal node becomes a splitting node and one leaf gets
tagged.

The leaf is that corresponding to e. To find the new splitting node, we get
the largest element z in the left subtree of the lowest left splitting node νl of e.
Let ν be the lowest common ancestor of e and z. If z < e (see Fig. 3(a)) then,
by Lemma 4.3, ν should be the new lowest right splitting node of e with one
reference to z and one to e, and νl should be updated to refer to e instead of
z. If e < z (see Fig. 3(b)) then, by Lemma 4.3, ν should be the new lowest left
splitting node of e with one reference to e and one to the right neighbor of e.
The node νr should be updated to refer to e instead of e’s right neighbor (see
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Fig. 4.4).

νr

νl

ν

z e

(a) case z < e

νl

νr

ν

e z

(b) case e < z

Figure 4.4: The result after insertion of e in the two scenarios in Fig. 4.3.

By a similar reasoning we see that deletion is done by removing the tags
in the leaf and in the lower of its lowest left and right splitting nodes. The
references in the other splitting node should be updated to refer to the neighbors
of e.

Since only a constant number of nodes need to be updated (and hence only
a constant number of references), the time to update (and also to search) the
STT is asymptotically bounded by the time to traverse the tree. The tree is of
height lg M + 1, which implies that the time to update and search the tree is
O(lg M) in our model.

2.3 The Yggdrasil variant of RAMBO

We have worked our way to a situation that would appear to require a sequential
scan of the nodes up a path. However, if we can find the lowest splitting nodes
and the lowest common ancestor in constant time, then we can perform all the
operations from Definition 4.1 in constant time. At this point we resort to a
change in the model model of computation and consequently an improvement
in the hardware to achieve a constant time solution.

The RAMBO model of computation is a RAM model in which, in one part of
the memory, registers can share bits, i.e. bytes overlap (cf. RAMBO introduced
by Fredman and Saks [10] and further described by Brodnik [5]). One particular
variant of the RAMBO which we have called Yggdrasil can help us to solve our
problem. (Yggdrasil according to Norse mythology is the great ash tree that
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holds together heaven, hell and earth with its roots and branches — a task
clearly requiring a nonstandard architecture, see [8].)

reg[5]

Bit j in register:

Register: 0 1 2 3 4 5 6 7

B15B14B13B12B11B10B9B80

1

2

3 B1

B2

B5 B6 B7

B3

B4

Figure 4.5: Overlapped memory Yggdrasil.

In the Yggdrasil memory layout, registers overlap as paths from leaf to root
in a complete binary tree (see Fig. 4.5). In particular, we think of the bits
Bk where k = 1, .., M − 1 as being enumerated in standard heap order. (The
root is B1, the children of Bk are B2k and B2k+1, and the leaves are bits BM/2

through BM−1.) The most significant bit of any register is the root bit, B1.
(By convention, we call this bit m − 1, and so, bit 0 is the least significant of a
register.) The bits of register i correspond to those along the path from ith leaf
(i.e. bit M/2 + i) to the root. This means:

reg[i].bit[j] = Bk where

k =

⌊
i

2j

⌋
+ 2m−j−1 . (1)

Note that the path for element e corresponds to register reg[i], where i = �e/2�.
We now store the tags of the internal nodes in the Yggdrasil memory, while an
array of heap ordered internal nodes, storing the references, and a boolean array
of tags of the leaves remain in regular memory.

To find the lowest splitting node νk of the element e we read the register
reg[i], where i = �e/2�. We then find the least significant set bit j of reg[i]
and compute k using Eq. 1. The element e is in the right subtree of a node νk

if the corresponding bit j of the binary representation of e is 1. Therefore, we
can use e and mask the value of register reg[i] to get the right splitting nodes
of e only. Hence, we can find the lowest right splitting node in constant time.
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Symmetrically, we can use the bitwise binary negation, e, of e to find the lowest
left splitting node.

The lowest common ancestor νk of two elements e and f ∈ M is the last
common node on the paths from the root to e and f respectively. In the binary
representation of e and f , this corresponds to the most significant bit j that
differs between e and f . Eq. 1 then gives

k =

⌊
i

2j

⌋
+ 2m−j−1

=

⌊�e/2�
2j

⌋
+ 2m−j−1

=
⌊ e

2j+1

⌋
+ 2m−j−1 where (2)

j = MSB(e XOR f) . (3)

Now we can find both the lowest splitting nodes of an element and the lowest
common ancestor of two elements in constant time. Following references and
updating those and the tags can also be done in constant time. Hence, given
Yggdrasil memory, updates and queries can be performed in constant time.

2.4 Saving memory

The STT contains a substantial amount of redundant information. First, the
leaves can be removed since a leaf is tagged if and only if it is referred to by
an internal node. Hence, membership can be determined by finding the lowest
splitting node ν of the element e. The element e is a member of N if and
only if ν contains a reference to e. Next, the information in the internal nodes
can be stored using references of variable length. A reference in a node νk on
level j (levels are counted, starting at 0 from the lowest level of internal nodes,
increasing towards the root, i.e., the root is at level m − 1) needs only j bits
instead of m bits. The node νk covers 2j+1 leaves, but only 2j leaves are in
each of the subtrees, and hence a leaf can be identified using j bits. The j +1st
bit is 1 if the reference is to the right subtree and 0 otherwise. The remaining
m− j−1 most significant bits are identical to the m− j−1 most significant bits
of e, where e is the element used to find the internal node νk. The space needed
to store the internal nodes (excluding the supernode) is

∑m−1
j=0 2m−1−j · 2 · j. If

we substitute with j1 = m − 1 − j, we get

m−1∑
j1=0

2j1 · 2 · (m − 1 − j1) = 2(

m−1∑
j1=0

(m − 1)2j1 −
m−1∑
j1=0

j12
j1

= 2((m − 1)(2m − 1) −
m−1∑
j1=0

j12
j1) .
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Now we can use
∑n

j=0 j2j = (n− 1)2n+1 + 2 (see [12, page 33]) and finally get

2((m − 1)(2m − 1) −
m−1∑
j1=0

j12
j1) = 2((m − 1)(2m − 1) − ((m − 2)2m + 2))

= 2 · 2m − 2m − 2 .

Hence, our data structure is using 2 ·2m−2m−2 bits instead of 2(2m−1)m bits
to store the references in the internal nodes. We also need to store the references
in the supernode and use 2m bits for that. These two improvements reduce the
space requirements from 2M lg M + M bits to 2M bits of conventional memory
for the discrete extended priority queue problem. We must admit, however, that
reducing the size does increase the, still constant, runtime.

The above discussion leads to our main result:

Theorem 4.1 Using the Split Tagged Tree together with the Yggdrasil memory
we can solve the discrete extended priority queue problem in O(1) worst case
time per operation using 2M bits of ordinary memory and M bits of Yggdrasil
memory.

To solve the problem with support for either predecessor or successor, but
not both, we remove the reference to one or the other element in the nodes.
This saves half of the ordinary memory and reduces the constant for update
times.

More precisely, if we want to support predecessor queries only, we keep,
in internal nodes, the reference to the largest element in the left subtree and
remove the reference to the smallest element in the right subtree. Then the
condition on the lowest left splitting node of Lemma 4.1 still holds since the
proof does not use the reference to the smallest element in the right subtree.
Further, the condition on the left neighbor of Lemma 4.2 also holds for the same
reason. Similarly, Lemma 4.3 holds as well. Hence, the discussion of how to
find predecessor and perform updates in Sect. 2.2 holds if we simply omit the
parts about the reference to the smallest element in the right subtree.

Similarly, if we want to support successor queries only, we keep, in the inter-
nal nodes, the reference to the smallest element in the right subtree and remove
the reference to the largest element in the left subtree. Instead of Lemma 4.3
we use Lemma 4.4 when looking for the new splitting node. Hence:

Corollary 4.1 Using the Split Tagged Tree together with the Yggdrasil mem-
ory we can solve a variant of the discrete extended priority queue problem,
with support for either Min, DeleteMin and Successor or Max, DeleteMax and
Predecessor, in O(1) worst case time per operation using M bits of ordinary
memory and M bits of Yggdrasil memory.

When N = o(M/ lg M), we can reduce the space even further by using
perfect hashing (see [7, 9]) to store tagged internal nodes. Each tagged node
contains two references of size lg M and we store N of M nodes using a hash
table. This gives a space requirement of O(N lg M) bits of ordinary memory.
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Queries can still be performed in O(1) worst case time while updates can be
performed in O(1) amortized expected time. This gives us an improved result
from Theorem 4.1:

Theorem 4.2 Using the Split Tagged Tree together with the Yggdrasil memory
we can solve the discrete extended priority queue problem using O(N lg M) bits
of ordinary memory and M bits of Yggdrasil memory. Query operations can be
performed in O(1) worst case time and update operations can be performed in
O(1) amortized expected time.

From Theorem 4.2, using the same reasoning as for Corollary 4.1 we also
get:

Corollary 4.2 Using the Split Tagged Tree together with the Yggdrasil mem-
ory we can solve a variant of the discrete extended priority queue problem,
with support for either Min, DeleteMin and Successor or Max, DeleteMax and
Predecessor using O(N lg M) bits of ordinary memory and M bits of Yggdrasil
memory where query operations can be performed in O(1) worst case time and
update operations can be performed in O(1) amortized expected time.
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An O(1) Solution to the Prefix Sum Problem on

a Specialized Memory Architecture

Andrej Brodnik ∗†‡ Johan Karlsson ∗ J. Ian Munro §

Andreas Nilsson ∗

Abstract

In this paper we study the Prefix Sum problem introduced by Fredman.
We show that it is possible to perform both update and retrieval in O(1)
time simultaneously under a memory model in which individual bits may
be shared by several words. We also show that two variants (generaliza-
tions) of the problem can be solved optimally in Θ(lg N) time under the
comparison based model of computation.

1 Introduction

Models of computation play a fundamental role in theoretical Computer Science,
and indeed, in the subject as a whole. Even in modeling a standard computer,
the random access machine (RAM) model has been subject to refinements which
more realistically model cost or, as in this paper, suggest feasible extensions to
the model that permit more efficient computation, at least for some problems.
Work taking into account a memory hierarchy, either when memory and page
sizes are known (cf. [2]) or not (cf. [11]) is an example of the former. Taking into
account parallelism, as in the PRAM model (cf. [17, 26]), is an obvious example
of the latter. More subtle examples include the recent result that the operations
of an arbitrary finite Abelian group can be carried out in constant time (We
assume a word of memory is adequate to hold the size of the group.) provided
one can reverse the bits of a word in constant time [8]. This argues for a more
robust set of operations. Here we deal with the way a single level memory is
organized and demonstrate that the power of a machine can be increased if we
permit individual bits to occur in several words simultaneously. This Random
Access Machine with Byte Overlap (RAMBO) was first suggested by Fredman
and Saks [10] and subsequently used by Brodnik et al. [6] and Brodnik and
Iacono [7]. Indeed it is shown in the latter two papers that a priority queue of
word sized objects can be maintained in constant time under a particular form
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of the RAMBO model, whereas Beame and Fich [3] and Brodnik and Iacono [7]
have both shown lower bounds on the problem under various forms of the RAM
model.

Here we discuss solutions to variants of the Prefix Sum problem (i.e. finding
the sum of the first j elements in an array and also updating these values) which
was introduced by Fredman [9]. Various lower bounds have been proven for the
problem. We, however, focus on the problem under a nonstandard, though very
feasible, model to achieve a constant time solution.

Fredman and Saks actually suggested the RAMBO model in connection with
the Prefix Sum problem. They claim, with no hint of how it may be done, that
Prefix Sum mod 2 can be solved in constant time under the model. We show
how this can be done not only for Prefix Sum mod 2 but for Prefix Sum modulo
an arbitrary universe size M ≤ 2Θ(b/n) where b is the word size, n = �lg N and
N is the size of the array.

The RAMBO model, besides the usual RAM operations (cf. [27]), also has a
part of memory where a bit may occur in several registers or in several positions
in one register. The way the bits occur in this part of the memory has to be
specified as part of the model. One example of such a memory variant is a
square of bits with b rows and b columns. A b-bit word can be fetched either
as a row or a column. In such a memory each bit can be accessed either by the
row word or the column word.

The form of RAMBO used by Brodnik et al. [6] to solve the priority queue
problem in O(1) worst case time makes use of words corresponding to the leaves
of a balanced binary tree. Each node of the tree contains a flag bit and each
such word contains the flags along the root to leaf path, so, for example, the
flag at the root is in all of these words. The specific architecture was called
Yggdrasil after the giant ash tree linking the worlds in Norse mythology. That
variant has been implemented in hardware [18] and the actual rerouting of the
bits on a word fetch is not difficult. In this paper we modify the Yggdrasil
variant slightly and solve the Prefix Sum problem. This gives further evidence
of the value of such an architecture, at least for a special purpose processor.

Now let us formally define the Prefix Sum problem:

Definition 5.1 The Prefix Sum problem is to maintain an array, A, of size
N , and to support the following operations:
Update(j, Δ) A(j) := A(j) + Δ

Retrieve(j) return
∑j

i=0 A(i)
where 0 ≤ j < N .

Fredman showed that, under the comparison based model of computation, an
O(lg N) solution exists for the Prefix Sum problem [9].

The problem can be generalized in several ways and we start by adding an-
other parameter, k to the Retrieve operation. This parameter is used to tell
the starting point of the array interval to sum over. Hence, Retrieve(k,j)
returns

∑j
i=k A(i), where 0 ≤ k ≤ j < N . This variant is usually referred

to as the Partial Sum or Range Sum problem. The Partial Sum problem
can be solved using a solution to the Prefix Sum problem (Retrieve(k,j) =
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Retrieve(j) - Retrieve(k-1)). In fact, the two problems are often used in-
terchangeably.

Furthermore, there is no obvious reason to only allow addition in the Update
and Retrieve operations. We can allow any binary function, ⊕, to be used.
In fact we can allow the Update operation to use one function, ⊕u, and the
Retrieve operation to use another function, ⊕r. We will refer to this variant
of the problem as the General Prefix Sum problem.

Moreover, one can allow array position to be inserted at or deleted from
arbitrary places. Hence, we can have sparse arrays, e.g. an array where only
A(5) and A(500) are present. Positions which have not yet been added or have
been deleted have the value 0. We refer to this variant as the Dynamic Prefix
Sum problem. Brodnik and Nilsson [21, pp 65-80] describe a data structure they
call a BinSeT tree which can be modified slightly to support all operation of the
Dynamic Prefix Sum problem in O(lg N) time.

The Searchable Partial Sum problem extends the set of operations with a
select(j) operation which finds the smallest i such that

∑i
k=0 A(k) ≥ j [23].

Hon et al. consider the Dynamic version of the Searchable Partial Sum problem
[16]. Another generalization is to use multidimensional arrays and this variant
has been studied by the data base community [4, 12, 13, 15, 24, 25].

Several lower bounds have been presented for the Prefix Sum problem: Fred-
man showed a Ω(lg N) algebraic complexity lower bound and a Ω(lgN/ lg lg N)
information-theoretic lower bound [9]. Yao [29] has shown that Ω(lg N/ lg lg N)
is an inherent lower bound under the semi-group model of computation and
this was improved by Hampapuram and Fredman to Ω(lg N) [14]. We side step
these lower bounds by considering the RAMBO model of computation [5, 10].

As with all RAM based model we need to restrict the size of a word which
can be stored and operated on. We denote the word size with b and assume
that b is an integer power of 2 which is true for most computers today. A
bounded word size also implies a bounded universe of elements that we store in
the array. We use M to denote the universe size. Hence all operations ⊕ have
to be computed modulo M and we require that each of the operands and the
result are stored in one word.

We will use n and m to denote �lg N and �lg M respectively. Hence,
N ≤ 2n and M ≤ 2m. Both n and m are less than or equal to b, (n, m ≤ b). In
one of the solutions we actually require that nm ≤ b.

In Sect. 2 we show a O(1) solution to the Prefix Sum problem under the
RAMBO model using a modified Yggdrasil variant. In Sect. 3 we discuss a
O(lg N) solution to the General and Dynamic Prefix Sum problems and finally
conclude the paper with some open questions in Sect. 4.

2 An O(1) Solution to the Prefix Sum Problem

In our O(1) solution to the Prefix Sum problem we use a complete binary tree
on top of the array (Fig. 5.1). We label the nodes in standard heap order, i.e.,
the root is node ν1 and the left and right children of a node νi are ν2i and ν2i+1
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respectively. In each node we store m bits representing the sum of the leaves in
the left subtree. Since we build a complete binary tree on top of the array we
assume that N = 2n (if this is not true we still build the complete tree and in
worst case waste space proportional to N/2 − 1). We do not store the original
array A since its values are stored implicitly in the tree. The only value not
stored in the tree (if N = 2n only) is A(N −1) and we store this value explicitly
(vn1). Formally we define:

Definition 5.2 A N-m-tree is a complete binary tree with N leaves in which
the internal nodes (νi) store a m-bit value. In addition, a m-bit value is stored
separately (vn1).

To update A(j) (Alg. 5.1) in this structure we have to update all the nodes
on the path from leaf j to the root in which j belongs to the left subtree. To
Retrieve(j) (Alg. 5.2) we need to sum the values of all the nodes on the path
from leaf j + 1 to the root in which j + 1 belongs to right subtree. Note that
the path corresponding to array position j starts at node νN/2+j/2.

ν4 ν6 ν7

ν9

ν2

ν1

ν3

ν5

ν10 ν11 ν12 ν13 ν14 ν15ν8

1 3 4 5 6 7 9 10 11 12 13 140 2 15

1412

0 ⊕ 1 ⊕ 2 ⊕ 3

0 ⊕ 1 ⊕ 2 ⊕ 3 ⊕ 4 ⊕ 5 ⊕ 6 ⊕ 7

8 ⊕ 9 ⊕ 10 ⊕ 11

0 ⊕ 1 4 ⊕ 5 8 ⊕ 9 12 ⊕ 13

1086420

8

Figure 5.1: Complete binary tree on top of A. Nodes are storing the sum of the
values in the leaves covered by the left subtree.

update(j, Δ)

if (j == N-1)

vn1 = vn1 + Δ;

else

i = N + j;

while (i > 1)

next = i div 2;
if (i mod 2 == 0)

νnext = νnext + Δ mod M);

i = next;

Algorithm 5.1: Updating of a N-m-tree in O(lg N) time.

The method described above implies a O(lg N) update and retrieval time
in the RAM model. To achieve constant time update and retrieval we use a
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retrieve(j)
if (j == N-1)

sum = vn1;

i = N + j;

else

sum = 0;

i = N + j + 1;

while (i > 1)

next = i div 2;
if (i mod 2 == 1)

sum = sum + νnext mod M;

i = next;

return sum;

Algorithm 5.2: Retrieve in a N-m-tree in O(lg N) time.

variant of the RAMBO model similar to the Yggdrasil variant. In the Yggdrasil
variant, registers overlap as paths from leaf to root in a complete binary tree
with one bit stored in each internal node [6]. We generalize the Yggdrasil variant
and let it store m bits in each node and call this variant m-Yggdrasil. In any
m-Yggdrasil, register reg[i] corresponds to the path from node νN/2+i to the
root of the tree. Each register consists of nm ≤ b bits. In total the m-Yggdrasil
registers need (N − 1) · m bits.

Now, we use the registers from m-Yggdrasil to store the nodes of our tree.
The path corresponding to array position j is stored in reg[j/2] and hence all
nodes along the path can be accessed at once.

We let levels of the tree be counted from the internal nodes above the leaves
starting at 0 and ending with n− 1 at the root. If the ith bit of j is 1 then j is
in the right subtree of the node on level i of the path and in the left otherwise.
Hence j can be used to determine which nodes along the path should be updated
(nodes corresponding to bits of j that are 0) and which nodes should be used
when retrieving a sum (nodes corresponding to bits of j that are 1).

When updating the m-Yggdrasil registers (Alg. 5.3), for all bits of j, if the
ith bit of j is 0 we add Δ to the value of the ith node along the path from j to
the root. To do this we shift Δ to the corresponding position (Δ << (im)) and
add to reg[j/2]. Instead of checking whether the ith bit of j is 0 we can mask
the shifted Δ with a value based on not j. The value consists of, if the ith bit
of not j is 1, m 1s shifted to the correct position and m 0s otherwise.

Actually, as long as the binary operation only affects the m bits that should
be updated we can use word-size parallelism (cf. [5]) and perform the update
of all nodes in parallel. In Sect. 2.1 we show that addition modulo M can be
implemented affecting only m bits.

We use two functions (dist(i) and mask(i)) to simplify the description of
the update and retrieve methods. The function dist(i), (0 ≤ i < 2m) computes
nm-bit values. The values are n copies of the m bits in i. For example, given
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update(j, Δ)

if (j == N-1)

vn1 = vn1 + Δ;

else

for (i=0; 0 < n; i++)

if (((j >> i) and 1) == 0)

reg[j/2] = reg[j/2] + (Δ << (i*m));

Algorithm 5.3: Updating of a N-m-tree stored in m-Yggdrasil memory
(O(lg N) time).

m = 3, n = 4 dist(010) is 010010010010. The function mask(i), (0 ≤ i < 2n)
also computes nm-bit values. These values are computed as follow: bit j (0 ≤
j < n) of i is copied to bits jm..(j + 1)m− 1. For example, given m = 3, n = 4,
mask(1001) is 111000000111. Both these functions can be implemented by
using word-size parallelism [5].

We can update the tree in constant time using the procedure in Alg. 5.4.
First we make n copies of Δ and then mask out the copies we need. Then finally
we add the value in reg[j/2] and the masked distributed Δ and store the result
in reg[j/2]. For the case when j = N − 1 we simply add vn1 and Δ and store
it in vn1. This gives us the following lemma:

Lemma 5.1 The update operation of the Prefix Sum problem can be supported
in O(1) when part of the N-m-tree is stored in a m-Yggdrasil memory.

update(j, Δ)

if (j == N-1)

vn1 = vn1 + Δ;

else

reg[j/2] = reg[j/2] + (dist(Δ) and mask(not j));

Algorithm 5.4: Updating of a N-m-tree stored in m-Yggdrasil memory using
word size parallelism (O(1) time).

To support the retrieve method in constant time we use a table SUM[i],
(0 ≤ i < 2nm) with m-bit values that are the sum modulo M of the n m-bit
values in i.

To retrieve the sum (Alg. 5.5) we read the register reg corresponding to j
and mask out the parts we need. Then we use the table SUM to calculate the
sum. Finally, we add vn1 to the sum if j = N − 1.

The space needed by the table SUM is 2nm · m = N lg M · m = M lg N · m,
which is rather large. In order to reduce the space requirement we can reduce,
by half, the number of bits used as index into the table. This gives us a space
requirement of

√
M lg N ·m. We do this by shifting the top n/2 m-bit values from
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retrieve(j)
if (j == N-1)

v = reg[j/2] and mask(j);

else

v = reg[(j+1)/2] and mask(j+1);

sum = SUM[v];

if (j == N-1)

sum = vn1 + sum;

return sum;

Algorithm 5.5: Retrieve in a N-m-tree stored in m-Yggdrasil memory using
word size parallelism (O(1) time).

reg down and computing the sum modulo M of these values and the bottom
n/2 values. Then this new (n/2)m-bit value is used as index into SUM instead.

We can actually repeat this process until we get the m-bit we desire, and
hence we do not need the table SUM (Alg. 5.6). However, this does increase the
time complexity to O(lg n) = O(lg lg N). This gives us a trade off between space
and time. By allowing O(ι) steps for the retrieve method we need M lg N/2ι · m
bits for the table.

retrieve(j)
if (j == N-1)

v = reg[j/2] and mask(j);

else

v = reg[(j+1)/2] and mask(j+1);

ι = �lg n�;
do

ι = ι-1;
vnew = (v>>((2ι)m)) + (v and ((1<<((2ι)m))-1));

v = vnew;

while (ι > 0)

sum = v;

if (j == N-1)

sum = vn1 + sum;

return sum;

Algorithm 5.6: Retrieve in a N-m-tree stored in m-Yggdrasil memory using
no additional memory (O(lg lg N) time).

Lemma 5.2 The retrieve operation of the Prefix Sum problem can be supported
in O(ι + 1) time using O(M lg N/2ι · m + m) bits of memory in addition to the
N-m-tree. Part of the N-m-tree is stored in m-Yggdrasil memory.

By adjusting ι we can achieve the following result:
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Corollary 5.1 The retrieve operation of the Prefix Sum problem can be sup-
ported in:

• O(1) time using O(M (�lg N�)/2 · m) bits of memory in addition to the N-
m-tree, with ι = 1.

• O(lg lg N) time using O(m) bits of memory in addition to the N-m-tree,
with ι = �lg lg N.

2.1 Addition modulo M

Let us consider the two m-bit operands a and b which are split into two pieces
each (alo, ahi, blo and bhi). The two pieces alo and ahi contain the m/2 least
and most significant bits of a respectively (similarly for blo and bhi). Note that
alo and the other pieces are stored in m-bit but only the m/2 least significant
bits are used.

We can now add the the two operands

c1lo = alo + blo (1)

c1hi = ahi + bhi . (2)

However, both c1lo and c1hi might need m/2+1 bits for its result. The m/2+1
bit of c1lo should be added to c1hi and we split c1lo into two pieces (c1lo,lo and
c1lo,hi) and add the most significant bits to c1hi,

chi = chi + clo,hi (3)

clo = clo,lo . (4)

The result of a + b is now stored in clo and chi and we have not used more than
m bits in any word. However, in total m + 1 might be needed for the value.

To compute c mod M we can check whether or not c − M >= 0, if so
c mod M = c − M and otherwise c mod M = c. However, we do not want to
produce a negative value since that would affect all the bits in the word. Instead
we add an additional 2m to the value and compare to 2m, i.e. c + 2m − M ≥
2m. Since 2m − M ≥ 0 this will never produce a negative value. Note that
c + 2m − M < M − 1 + M − 1 + 2m − M = M + 2m − 2 <= 2m+1 − 2 which
only needs m + 1 bits to be represented. Hence, if we calculate this value using
the strategy above we will not use more than m bits of any word.

Furthermore, a straight forward less than comparison can not be performed
using word-size parallelism since all bits of the words are considered. Instead
we view the comparison as a check whether the m + 1st bit is set or not. If it is
set the value is larger than or equal to 2m (cf. [19, 22]). We can actually create
a bit mask which consists of m 1s if the m + 1st bit is set and m 0s otherwise

d = (c + 2m − M and 2m) − ((c + 2m − M and 2m) >> m) . (5)

This bit mask d can then be used to calculate res = c mod M . Since res is
equal to c − M if the m + 1st bit of c is set and c otherwise we get

res = ((c − M) and d) or (c and not d) . (6)
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When computing c− M we must make sure that we do not produce a negative
value. This is done by using a similar strategy as for addition above, but we
also set any of the bits in chi,hi to 1 during the computation. If c−M is greater
than 0 this will not affect the result and otherwise the result will not be used.

We have a procedure which can be used to compute (a + b) mod M without
using more than m bits in any word. Hence, word-size parallelism can be used
and we get our main result from this section:

Theorem 5.1 Using the N-m-tree together with the m-Yggdrasil memory we
can support the operations of the Prefix Sum problem in O(ι + 1) time using
(N − 1)m bits of m-Yggdrasil memory and O(Mn/2ι · m + m) bits of ordinary
memory.

3 An O(lg N) Solution to the General and Dy-

namic Prefix Sum Problem

We can actually partially solve the General Prefix Sum problem using the N-m-
tree data structure and the m-Yggdrasil variant of RAMBO. All binary opera-
tions such that all elements in the universe have a unique inverse element (i.e.
binary operations which form a Group with the set of elements in the universe)
and only affect the m bits involved in the operation can be supported. This
includes for example addition and subtraction but not the maximum function.

To solve the General and Dynamic Prefix Sum problem for semi-group oper-
ations we modify the Binary Segment Tree (BinSeT) data structure suggested
by Brodnik and Nilsson. It was designed to handle in-advance resource reser-
vation [21, pp 65-80] and if it is slightly modified it can solve both the General
and Dynamic Prefix Sum problems efficiently. The original BinSeT stores, in
each internal node, μ, the maximum value over the interval, and δ, the change
of the value over the interval. Further, it also stores τ , the time of the left most
event in the right subtree.

Instead of storing times as interval dividers we store array indices. To solve
the Dynamic Prefix Sum problem with addition as operation and we only need
to store δ. When solving the General and Prefix Sum problem one need to store
information depending on the two binary operations ⊕u and ⊕r.

When adding a new array position or deleting an array position the tree is
rebalanced (cf. [1, 20]) and hence the height is always O(lg N). When updating
a value in an array position we start at the root and search for the proper leaf
using the interval dividers. During the back tracking of the recursion we update
the information stored in each affected node.

At retrieval we process the information of the proper nodes when traversing
the tree. Since the height of the tree is O(lg N) all the operations can be
performed in O(lg N) time. This matches the lower bound by Hampapuram
and Fredman [14]

BinSeT consists of O(N) nodes when we use it to solve the General Prefix
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Sum. Each node contains O(1) m-bit values and hence the total space require-
ment is O(Nm) bits.

4 Conclusion

The Dynamic and General Prefix Sum problems can both be solved optimally in
Θ(lg N) using O(Nm) space under the comparison based model with semi-group
operations.

The Prefix Sum problem can be solved in O(1) time under the RAMBO

model when we allow O(
√

M (�lg N�) · m) bits of ordinary memory and O(Nm)
bits of m-Yggdrasil memory to be used. This is a huge amount of ordinary
memory and if we restrict the space requirement to be sub exponential in both
N and M (O(m) bits of ordinary memory and O(Nm) bits of m-Yggdrasil
memory) we need to used O(lg lg N) time. We know of no better lower bound
under RAMBO than the trivial Ω(1) when only allowing O((NO(1) +MO(1))m)
space.

Further, it is currently unknown if one can achieve a O(1) solution to the
Dynamic and General Prefix Sum problems using the RAMBO model. Another
open question is whether or not it is possible achieve a o(lg N) solution to the
multidimensional variant.

Acknowledgment

We thank the anonymous reviewers for helpful comments and additional refer-
ences.

References

[1] G. M. Adelson-Velskii and E. M. Landis. An algorithm for the organization
of information. In Soviet Math. Doclady 3, pages 1259–1263, 1962.

[2] Alok Aggarwal and Ashok K. Chandra. Virtual memory algorithms (pre-
liminary version). In Proceedings of the 20th Annual ACM Symposium on
Theory of Computing, pages 173–185. ACM Press, May 2–4 1988.

[3] P. Beame and F. E. Fich. Optimal bounds for the predecessor problem and
related problems. Journal of Computer and System Sciences, 65(1):38–72,
2002.

[4] Fredrik Bengtsson and Jingsen Chen. Space-efficient range-sum queries
in OLAP. In Yahiko Kambayashi, Mukesh Mohania, and Wolfram Wöß,
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